Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import tifffile
|
|
3 |
import pydicom
|
4 |
from scipy.ndimage import zoom
|
5 |
import torch
|
6 |
-
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import base64
|
@@ -20,18 +20,18 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
20 |
|
21 |
# Dati di esempio predefiniti
|
22 |
esempi = {
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
}
|
36 |
|
37 |
|
@@ -130,7 +130,7 @@ if st.session_state['step'] == 1:
|
|
130 |
# Breve descrizione del lavoro
|
131 |
st.markdown("""
|
132 |
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'>
|
133 |
-
This work introduces MedCoDi-M, a novel multi-prompt
|
134 |
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation.
|
135 |
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance.
|
136 |
</div>
|
@@ -141,7 +141,7 @@ if st.session_state['step'] == 1:
|
|
141 |
|
142 |
# Immagine con didascalia migliorata e con dimensione della caption aumentata
|
143 |
image_path = "./DEMO/Loghi/model_final.png" # Sostituisci con il percorso della tua immagine
|
144 |
-
st.image(image_path, caption='',
|
145 |
|
146 |
# Caption con dimensione del testo migliorata
|
147 |
st.markdown("""
|
@@ -163,15 +163,15 @@ if st.session_state['step'] == 1:
|
|
163 |
if st.session_state['step'] == 2:
|
164 |
# Opzioni disponibili
|
165 |
options = [
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
]
|
171 |
|
172 |
# Messaggio di selezione con dimensione aumentata
|
173 |
st.markdown(
|
174 |
-
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform
|
175 |
unsafe_allow_html=True)
|
176 |
|
177 |
# Aumentare la dimensione di "Please select an option:"
|
@@ -220,17 +220,17 @@ if st.session_state['step'] == 3:
|
|
220 |
unsafe_allow_html=True)
|
221 |
|
222 |
# Carica l'immagine frontale
|
223 |
-
if "
|
224 |
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
225 |
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"])
|
226 |
|
227 |
# Carica l'immagine laterale
|
228 |
-
if "
|
229 |
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
230 |
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"])
|
231 |
|
232 |
# Inserisci il report clinico
|
233 |
-
if "
|
234 |
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True)
|
235 |
st.session_state['report'] = st.text_area("", value=st.session_state['report'])
|
236 |
|
@@ -249,11 +249,11 @@ if st.session_state['step'] == 3:
|
|
249 |
with st.spinner("Preprocessing the data..."):
|
250 |
time.sleep(3)
|
251 |
# Controllo che i file necessari siano stati caricati
|
252 |
-
if "
|
253 |
st.error("Load the Frontal image.")
|
254 |
-
elif "
|
255 |
st.error("Load the Lateral image.")
|
256 |
-
elif "
|
257 |
st.error("Type the clinical report.")
|
258 |
else:
|
259 |
st.write(f"Execution of: {st.session_state['selected_option']}")
|
@@ -311,7 +311,7 @@ if st.session_state['step'] == 3:
|
|
311 |
if lateral.dtype != np.uint8:
|
312 |
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8)
|
313 |
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
314 |
-
lateral2 = Image.
|
315 |
st.write("Lateral Image loaded successfully!")
|
316 |
st.image(lateral2, caption="Lateral Image Loaded", use_column_width=True)
|
317 |
if st.session_state['report']:
|
@@ -319,20 +319,20 @@ if st.session_state['step'] == 3:
|
|
319 |
st.write(f"Loaded Report: {report}")
|
320 |
|
321 |
inputs = []
|
322 |
-
if "
|
323 |
inputs.append('frontal')
|
324 |
-
if "
|
325 |
inputs.append('lateral')
|
326 |
-
if "
|
327 |
inputs.append('text')
|
328 |
|
329 |
# Ora vediamo cosa c'è dopo la freccia
|
330 |
outputs = []
|
331 |
-
if "
|
332 |
outputs.append('frontal')
|
333 |
-
if "
|
334 |
outputs.append('lateral')
|
335 |
-
if "
|
336 |
outputs.append('text')
|
337 |
|
338 |
# Ultima cosa che va fatta è passare allo step 4, prima di farlo però, tutte le variabili che ci servono
|
@@ -383,20 +383,20 @@ if st.session_state['step'] == 5:
|
|
383 |
unsafe_allow_html=True)
|
384 |
|
385 |
inputs = []
|
386 |
-
if "
|
387 |
-
inputs.append('
|
388 |
-
if "
|
389 |
-
inputs.append('
|
390 |
-
if "
|
391 |
-
inputs.append('
|
392 |
|
393 |
outputs = []
|
394 |
-
if "
|
395 |
-
outputs.append('
|
396 |
-
if "
|
397 |
-
outputs.append('
|
398 |
-
if "
|
399 |
-
outputs.append('
|
400 |
|
401 |
esempio = esempi[st.session_state['selected_option']]
|
402 |
|
@@ -410,8 +410,8 @@ if st.session_state['step'] == 5:
|
|
410 |
|
411 |
for idx, inp in enumerate(inputs):
|
412 |
with input_cols[idx]:
|
413 |
-
if inp == '
|
414 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
415 |
print(path)
|
416 |
if path.endswith(".tiff"):
|
417 |
im = tifffile.imread(path)
|
@@ -419,16 +419,16 @@ if st.session_state['step'] == 5:
|
|
419 |
elif path.endswith(".png"):
|
420 |
im = Image.open(path)
|
421 |
st.image(im, caption="Frontal Image")
|
422 |
-
elif inp == '
|
423 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
424 |
if path.endswith(".tiff"):
|
425 |
im = tifffile.imread(path)
|
426 |
im = np.clip(im, 0, 1)
|
427 |
elif path.endswith(".png"):
|
428 |
im = Image.open(path)
|
429 |
st.image(im, caption="Lateral Image")
|
430 |
-
elif inp == '
|
431 |
-
st.write(f"Report: {esempio['
|
432 |
|
433 |
st.markdown(
|
434 |
"<h3 style='text-align: justify'><strong>OUTPUTS</strong></h3>",
|
@@ -439,8 +439,8 @@ if st.session_state['step'] == 5:
|
|
439 |
|
440 |
for idx, out in enumerate(outputs):
|
441 |
with output_cols[idx]:
|
442 |
-
if out == '
|
443 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
444 |
if path.endswith(".tiff"):
|
445 |
im = tifffile.imread(path)
|
446 |
# facciamo clamp tra 0 e 1
|
@@ -448,8 +448,8 @@ if st.session_state['step'] == 5:
|
|
448 |
elif path.endswith(".png"):
|
449 |
im = Image.open(path)
|
450 |
st.image(im, caption="Frontal Image")
|
451 |
-
elif out == '
|
452 |
-
path = "./DEMO/ESEMPI/" + esempio['
|
453 |
if path.endswith(".tiff"):
|
454 |
im = tifffile.imread(path)
|
455 |
# facciamo clamp tra 0 e 1
|
@@ -457,8 +457,8 @@ if st.session_state['step'] == 5:
|
|
457 |
elif path.endswith(".png"):
|
458 |
im = Image.open(path)
|
459 |
st.image(im, caption="Lateral Image")
|
460 |
-
elif out == '
|
461 |
-
st.write(f"Report: {esempio['
|
462 |
|
463 |
# Pulsante per tornare all'inizio
|
464 |
if st.button("Return to the beginning"):
|
|
|
3 |
import pydicom
|
4 |
from scipy.ndimage import zoom
|
5 |
import torch
|
6 |
+
from core.models.dani_model import dani_model
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import base64
|
|
|
20 |
|
21 |
# Dati di esempio predefiniti
|
22 |
esempi = {
|
23 |
+
"Frontal -> Lateral": {'Frontal': 'FtoL.png', 'Lateral': 'LfromF.png'},
|
24 |
+
"Frontal -> Report": {'Frontal': '31d9847f-987fcf63-704f7496-d2b21eb8-63cd973e.tiff', 'Report': 'Small bilateral pleural effusions, left greater than right.'},
|
25 |
+
"Frontal -> Lateral + Report": {'Frontal': '81bca127-0c416084-67f8033c-ecb26476-6d1ecf60.tiff', 'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'No acute intrathoracic process. Heart Size is normal. Lungs are clear. No pneumothorax'},
|
26 |
+
"Lateral -> Frontal": {'Lateral': 'LtoF.png', 'Frontal': 'FfromL.png'},
|
27 |
+
"Lateral -> Report": {'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'no acute cardiopulmonary process. if concern for injury persists, a dedicated rib series with markers would be necessary to ensure no rib fractures.'},
|
28 |
+
"Lateral -> Frontal + Report": {'Lateral': 'reald52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Frontal': 'ab37274f-b4c1fc04-e2ff24b4-4a130ba3-cd167968.tiff', 'Report': 'No acute intrathoracic process. If there is strong concern for rib fracture, a dedicated rib series may be performed.'},
|
29 |
+
"Report -> Frontal": {'Report': 'Left lung opacification which may reflect pneumonia superimposed on metastatic disease.', 'Frontal': '02aa804e-bde0afdd-112c0b34-7bc16630-4e384014.tiff'},
|
30 |
+
"Report -> Lateral": {'Report': 'Bilateral pleural effusions, cardiomegaly and mild edema suggest fluid overload.', 'Lateral': '489faba7-a9dc5f1d-fd7241d6-9638d855-eaa952b1.tiff'},
|
31 |
+
"Report -> Frontal + Lateral": {'Report': 'No acute intrathoracic process. The lungs are clean and heart is normal size.', 'Frontal': 'f27ba7cd-44486c2e-29f3e890-f2b9f94e-84110448.tiff', 'Lateral': 'b20c9570-de77944a-b8604ba0-73305a7b-d608a72b.tiff'},
|
32 |
+
"Frontal + Lateral -> Report": {'Frontal': '95856dd1-5878b5b1-9c104817-760c0122-6187946f.tiff', 'Lateral': '3723d912-71940d69-4fef2dd2-27af5a7b-127ba20c.tiff', 'Report': 'Opacities in the right upper or middle lobe, maybe early pneumonia.'},
|
33 |
+
"Frontal + Report -> Lateral": {'Frontal': 'e7f21453-7956d79a-44e44614-fae8ff16-d174d1a0.tiff', 'Report': 'No focal consolidation.', 'Lateral': '8037e6b9-06367464-a4ccd63a-5c5c5a81-ce3e7ffc.tiff'},
|
34 |
+
"Lateral + Report -> Frontal": {'Lateral': '02c66644-b1883a91-54aed0e7-62d25460-398f9865.tiff', 'Report': 'No evidence of acute cardiopulmonary process.', 'Frontal': 'b1f169f1-12177dd5-2fa1c4b1-7b816311-85d769e9.tiff'}
|
35 |
}
|
36 |
|
37 |
|
|
|
130 |
# Breve descrizione del lavoro
|
131 |
st.markdown("""
|
132 |
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'>
|
133 |
+
This work introduces MedCoDi-M, a novel multi-prompt foundation model for multi-modal medical data generation.
|
134 |
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation.
|
135 |
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance.
|
136 |
</div>
|
|
|
141 |
|
142 |
# Immagine con didascalia migliorata e con dimensione della caption aumentata
|
143 |
image_path = "./DEMO/Loghi/model_final.png" # Sostituisci con il percorso della tua immagine
|
144 |
+
st.image(image_path, caption='', use_container_width=True)
|
145 |
|
146 |
# Caption con dimensione del testo migliorata
|
147 |
st.markdown("""
|
|
|
163 |
if st.session_state['step'] == 2:
|
164 |
# Opzioni disponibili
|
165 |
options = [
|
166 |
+
"Frontal -> Lateral", "Frontal -> Report", "Frontal -> Lateral + Report",
|
167 |
+
"Lateral -> Frontal", "Lateral -> Report", "Lateral -> Frontal + Report",
|
168 |
+
"Report -> Frontal", "Report -> Lateral", "Report -> Frontal + Lateral",
|
169 |
+
"Frontal + Lateral -> Report", "Frontal + Report -> Lateral", "Lateral + Report -> Frontal"
|
170 |
]
|
171 |
|
172 |
# Messaggio di selezione con dimensione aumentata
|
173 |
st.markdown(
|
174 |
+
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform:</strong></h4>",
|
175 |
unsafe_allow_html=True)
|
176 |
|
177 |
# Aumentare la dimensione di "Please select an option:"
|
|
|
220 |
unsafe_allow_html=True)
|
221 |
|
222 |
# Carica l'immagine frontale
|
223 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
224 |
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
225 |
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"])
|
226 |
|
227 |
# Carica l'immagine laterale
|
228 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
229 |
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True)
|
230 |
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"])
|
231 |
|
232 |
# Inserisci il report clinico
|
233 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
234 |
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True)
|
235 |
st.session_state['report'] = st.text_area("", value=st.session_state['report'])
|
236 |
|
|
|
249 |
with st.spinner("Preprocessing the data..."):
|
250 |
time.sleep(3)
|
251 |
# Controllo che i file necessari siano stati caricati
|
252 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['frontal_file']:
|
253 |
st.error("Load the Frontal image.")
|
254 |
+
elif "Lateral" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['lateral_file']:
|
255 |
st.error("Load the Lateral image.")
|
256 |
+
elif "Report" in st.session_state['selected_option'].split(" ->")[0] and not st.session_state['report']:
|
257 |
st.error("Type the clinical report.")
|
258 |
else:
|
259 |
st.write(f"Execution of: {st.session_state['selected_option']}")
|
|
|
311 |
if lateral.dtype != np.uint8:
|
312 |
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8)
|
313 |
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
314 |
+
lateral2 = Image.Frontalmarray(lateral2)
|
315 |
st.write("Lateral Image loaded successfully!")
|
316 |
st.image(lateral2, caption="Lateral Image Loaded", use_column_width=True)
|
317 |
if st.session_state['report']:
|
|
|
319 |
st.write(f"Loaded Report: {report}")
|
320 |
|
321 |
inputs = []
|
322 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
323 |
inputs.append('frontal')
|
324 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
325 |
inputs.append('lateral')
|
326 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
327 |
inputs.append('text')
|
328 |
|
329 |
# Ora vediamo cosa c'è dopo la freccia
|
330 |
outputs = []
|
331 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[1]:
|
332 |
outputs.append('frontal')
|
333 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[1]:
|
334 |
outputs.append('lateral')
|
335 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[1]:
|
336 |
outputs.append('text')
|
337 |
|
338 |
# Ultima cosa che va fatta è passare allo step 4, prima di farlo però, tutte le variabili che ci servono
|
|
|
383 |
unsafe_allow_html=True)
|
384 |
|
385 |
inputs = []
|
386 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[0]:
|
387 |
+
inputs.append('Frontal')
|
388 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[0]:
|
389 |
+
inputs.append('Lateral')
|
390 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[0]:
|
391 |
+
inputs.append('Report')
|
392 |
|
393 |
outputs = []
|
394 |
+
if "Frontal" in st.session_state['selected_option'].split(" ->")[1]:
|
395 |
+
outputs.append('Frontal')
|
396 |
+
if "Lateral" in st.session_state['selected_option'].split(" ->")[1]:
|
397 |
+
outputs.append('Lateral')
|
398 |
+
if "Report" in st.session_state['selected_option'].split(" ->")[1]:
|
399 |
+
outputs.append('Report')
|
400 |
|
401 |
esempio = esempi[st.session_state['selected_option']]
|
402 |
|
|
|
410 |
|
411 |
for idx, inp in enumerate(inputs):
|
412 |
with input_cols[idx]:
|
413 |
+
if inp == 'Frontal':
|
414 |
+
path = "./DEMO/ESEMPI/" + esempio['Frontal']
|
415 |
print(path)
|
416 |
if path.endswith(".tiff"):
|
417 |
im = tifffile.imread(path)
|
|
|
419 |
elif path.endswith(".png"):
|
420 |
im = Image.open(path)
|
421 |
st.image(im, caption="Frontal Image")
|
422 |
+
elif inp == 'Lateral':
|
423 |
+
path = "./DEMO/ESEMPI/" + esempio['Lateral']
|
424 |
if path.endswith(".tiff"):
|
425 |
im = tifffile.imread(path)
|
426 |
im = np.clip(im, 0, 1)
|
427 |
elif path.endswith(".png"):
|
428 |
im = Image.open(path)
|
429 |
st.image(im, caption="Lateral Image")
|
430 |
+
elif inp == 'Report':
|
431 |
+
st.write(f"Report: {esempio['Report']}")
|
432 |
|
433 |
st.markdown(
|
434 |
"<h3 style='text-align: justify'><strong>OUTPUTS</strong></h3>",
|
|
|
439 |
|
440 |
for idx, out in enumerate(outputs):
|
441 |
with output_cols[idx]:
|
442 |
+
if out == 'Frontal':
|
443 |
+
path = "./DEMO/ESEMPI/" + esempio['Frontal']
|
444 |
if path.endswith(".tiff"):
|
445 |
im = tifffile.imread(path)
|
446 |
# facciamo clamp tra 0 e 1
|
|
|
448 |
elif path.endswith(".png"):
|
449 |
im = Image.open(path)
|
450 |
st.image(im, caption="Frontal Image")
|
451 |
+
elif out == 'Lateral':
|
452 |
+
path = "./DEMO/ESEMPI/" + esempio['Lateral']
|
453 |
if path.endswith(".tiff"):
|
454 |
im = tifffile.imread(path)
|
455 |
# facciamo clamp tra 0 e 1
|
|
|
457 |
elif path.endswith(".png"):
|
458 |
im = Image.open(path)
|
459 |
st.image(im, caption="Lateral Image")
|
460 |
+
elif out == 'Report':
|
461 |
+
st.write(f"Report: {esempio['Report']}")
|
462 |
|
463 |
# Pulsante per tornare all'inizio
|
464 |
if st.button("Return to the beginning"):
|