import gradio as gr from fastai.vision.all import * import skimage import os learn = load_learner('learner.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} for root, dirs, files in os.walk(r'sample_images/'): for filename in files: print(filename) title = "Paddy Disease Classifier with EdgeNeXt" description = "9 Diseases + 1 Normal class." interpretation='default' examples = ["sample_images/"+file for file in files] article="

Blog post

" enable_queue=True gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(224, 224)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue, theme="grass", ).launch()