Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import pandas as pd
|
2 |
-
|
3 |
-
|
4 |
df = pd.read_csv('./anime.csv')
|
5 |
|
6 |
context_data = []
|
@@ -24,19 +22,21 @@ from langchain_groq import ChatGroq
|
|
24 |
|
25 |
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
26 |
|
27 |
-
|
28 |
from langchain_huggingface import HuggingFaceEmbeddings
|
29 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
30 |
|
31 |
-
# create vector store
|
32 |
from langchain_chroma import Chroma
|
33 |
|
34 |
vectorstore = Chroma(
|
35 |
-
collection_name="
|
36 |
embedding_function=embed_model,
|
37 |
persist_directory="./",
|
38 |
)
|
39 |
|
|
|
|
|
40 |
# add data to vector nstore
|
41 |
vectorstore.add_texts(context_data)
|
42 |
|
@@ -44,7 +44,8 @@ retriever = vectorstore.as_retriever()
|
|
44 |
|
45 |
from langchain_core.prompts import PromptTemplate
|
46 |
|
47 |
-
|
|
|
48 |
Use the provided context to answer the question.
|
49 |
If you don't know the answer, say so. Explain your answer in detail.
|
50 |
Do not discuss the context in your response; just provide the answer directly.
|
@@ -55,6 +56,7 @@ template = ("""You are a medical expert.
|
|
55 |
|
56 |
Answer:""")
|
57 |
|
|
|
58 |
rag_prompt = PromptTemplate.from_template(template)
|
59 |
|
60 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
1 |
import pandas as pd
|
|
|
|
|
2 |
df = pd.read_csv('./anime.csv')
|
3 |
|
4 |
context_data = []
|
|
|
22 |
|
23 |
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
|
24 |
|
25 |
+
!Embedding model
|
26 |
from langchain_huggingface import HuggingFaceEmbeddings
|
27 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
28 |
|
29 |
+
# create vector store
|
30 |
from langchain_chroma import Chroma
|
31 |
|
32 |
vectorstore = Chroma(
|
33 |
+
collection_name="Anime_dataset_store",
|
34 |
embedding_function=embed_model,
|
35 |
persist_directory="./",
|
36 |
)
|
37 |
|
38 |
+
vectorstore.get().keys()
|
39 |
+
|
40 |
# add data to vector nstore
|
41 |
vectorstore.add_texts(context_data)
|
42 |
|
|
|
44 |
|
45 |
from langchain_core.prompts import PromptTemplate
|
46 |
|
47 |
+
# Modified template for anime dataset
|
48 |
+
template = ("""You are an anime expert.
|
49 |
Use the provided context to answer the question.
|
50 |
If you don't know the answer, say so. Explain your answer in detail.
|
51 |
Do not discuss the context in your response; just provide the answer directly.
|
|
|
56 |
|
57 |
Answer:""")
|
58 |
|
59 |
+
# Create the prompt
|
60 |
rag_prompt = PromptTemplate.from_template(template)
|
61 |
|
62 |
from langchain_core.output_parsers import StrOutputParser
|