dntwaritag commited on
Commit
4de0864
·
verified ·
1 Parent(s): d2c92c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -1,6 +1,4 @@
1
  import pandas as pd
2
-
3
-
4
  df = pd.read_csv('./anime.csv')
5
 
6
  context_data = []
@@ -24,19 +22,21 @@ from langchain_groq import ChatGroq
24
 
25
  llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
26
 
27
- ## Embedding model!
28
  from langchain_huggingface import HuggingFaceEmbeddings
29
  embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
30
 
31
- # create vector store!
32
  from langchain_chroma import Chroma
33
 
34
  vectorstore = Chroma(
35
- collection_name="medical_dataset_store",
36
  embedding_function=embed_model,
37
  persist_directory="./",
38
  )
39
 
 
 
40
  # add data to vector nstore
41
  vectorstore.add_texts(context_data)
42
 
@@ -44,7 +44,8 @@ retriever = vectorstore.as_retriever()
44
 
45
  from langchain_core.prompts import PromptTemplate
46
 
47
- template = ("""You are a medical expert.
 
48
  Use the provided context to answer the question.
49
  If you don't know the answer, say so. Explain your answer in detail.
50
  Do not discuss the context in your response; just provide the answer directly.
@@ -55,6 +56,7 @@ template = ("""You are a medical expert.
55
 
56
  Answer:""")
57
 
 
58
  rag_prompt = PromptTemplate.from_template(template)
59
 
60
  from langchain_core.output_parsers import StrOutputParser
 
1
  import pandas as pd
 
 
2
  df = pd.read_csv('./anime.csv')
3
 
4
  context_data = []
 
22
 
23
  llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
24
 
25
+ !Embedding model
26
  from langchain_huggingface import HuggingFaceEmbeddings
27
  embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
28
 
29
+ # create vector store
30
  from langchain_chroma import Chroma
31
 
32
  vectorstore = Chroma(
33
+ collection_name="Anime_dataset_store",
34
  embedding_function=embed_model,
35
  persist_directory="./",
36
  )
37
 
38
+ vectorstore.get().keys()
39
+
40
  # add data to vector nstore
41
  vectorstore.add_texts(context_data)
42
 
 
44
 
45
  from langchain_core.prompts import PromptTemplate
46
 
47
+ # Modified template for anime dataset
48
+ template = ("""You are an anime expert.
49
  Use the provided context to answer the question.
50
  If you don't know the answer, say so. Explain your answer in detail.
51
  Do not discuss the context in your response; just provide the answer directly.
 
56
 
57
  Answer:""")
58
 
59
+ # Create the prompt
60
  rag_prompt = PromptTemplate.from_template(template)
61
 
62
  from langchain_core.output_parsers import StrOutputParser