import gradio as gr
title = "FlauBERT"
description = "Gradio Demo for FlauBERT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "
FlauBERT: Unsupervised Language Model Pre-training for French
"
examples = [
["Paris est la de la France.","flaubert_small_cased"]
]
io1 = gr.Interface.load("huggingface/flaubert/flaubert_small_cased")
io2 = gr.Interface.load("huggingface/flaubert/flaubert_base_cased")
def inference(inputtext, model):
if model == "flaubert_small_cased":
outlabel = io1(inputtext)
else:
outlabel = io2(inputtext)
return outlabel
gr.Interface(
inference,
[gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["flaubert_small_cased","flaubert_base_cased"], type="value", default="flaubert_small_cased", label="model")],
[gr.outputs.Label(label="Output")],
examples=examples,
article=article,
title=title,
description=description).launch(enable_queue=True)