Spaces:
Running
Running
import gradio as gr | |
title = "T5" | |
description = "Gradio Demo for T5. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1910.10683' target='_blank'>Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer</a></p>" | |
examples = [ | |
['My name is Sarah and I live in London',"t5-base"] | |
] | |
io1 = gr.Interface.load("huggingface/t5-base") | |
io2 = gr.Interface.load("huggingface/t5-small") | |
io3 = gr.Interface.load("huggingface/t5-large") | |
io4 = gr.Interface.load("huggingface/t5-3b") | |
def inference(text, model): | |
if model == "t5-base": | |
outtext = io1(text) | |
elif model == "t5-small": | |
outtext = io2(text) | |
elif model == "t5-large": | |
outtext = io3(text) | |
else: | |
outtext = io4(text) | |
return outtext | |
gr.Interface( | |
inference, | |
[gr.inputs.Textbox(label="Input"),gr.inputs.Dropdown(choices=["t5-base","t5-small","t5-large","t5-3b"], type="value", default="t5-base", label="model") | |
], | |
gr.outputs.Textbox(label="Output"), | |
examples=examples, | |
article=article, | |
title=title, | |
description=description).launch(enable_queue=True, cache_examples=True) |