doevent commited on
Commit
7a69f1b
1 Parent(s): a54c072

Upload train_vqa.py

Browse files
Files changed (1) hide show
  1. train_vqa.py +202 -0
train_vqa.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import argparse
9
+ import os
10
+ import ruamel_yaml as yaml
11
+ import numpy as np
12
+ import random
13
+ import time
14
+ import datetime
15
+ import json
16
+ from pathlib import Path
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ from torch.utils.data import DataLoader
22
+ import torch.backends.cudnn as cudnn
23
+ import torch.distributed as dist
24
+
25
+ from models.blip_vqa import blip_vqa
26
+ import utils
27
+ from utils import cosine_lr_schedule
28
+ from data import create_dataset, create_sampler, create_loader
29
+ from data.vqa_dataset import vqa_collate_fn
30
+ from data.utils import save_result
31
+
32
+
33
+ def train(model, data_loader, optimizer, epoch, device):
34
+ # train
35
+ model.train()
36
+
37
+ metric_logger = utils.MetricLogger(delimiter=" ")
38
+ metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
39
+ metric_logger.add_meter('loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
40
+
41
+ header = 'Train Epoch: [{}]'.format(epoch)
42
+ print_freq = 50
43
+
44
+ for i,(image, question, answer, weights, n) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
45
+ image, weights = image.to(device,non_blocking=True), weights.to(device,non_blocking=True)
46
+
47
+ loss = model(image, question, answer, train=True, n=n, weights=weights)
48
+
49
+ optimizer.zero_grad()
50
+ loss.backward()
51
+ optimizer.step()
52
+
53
+ metric_logger.update(loss=loss.item())
54
+ metric_logger.update(lr=optimizer.param_groups[0]["lr"])
55
+
56
+ # gather the stats from all processes
57
+ metric_logger.synchronize_between_processes()
58
+ print("Averaged stats:", metric_logger.global_avg())
59
+ return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
60
+
61
+
62
+ @torch.no_grad()
63
+ def evaluation(model, data_loader, device, config) :
64
+ # test
65
+ model.eval()
66
+
67
+ metric_logger = utils.MetricLogger(delimiter=" ")
68
+ header = 'Generate VQA test result:'
69
+ print_freq = 50
70
+
71
+ result = []
72
+
73
+ if config['inference']=='rank':
74
+ answer_list = data_loader.dataset.answer_list
75
+ answer_candidates = model.tokenizer(answer_list, padding='longest', return_tensors='pt').to(device)
76
+ answer_candidates.input_ids[:,0] = model.tokenizer.bos_token_id
77
+
78
+ for n, (image, question, question_id) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
79
+ image = image.to(device,non_blocking=True)
80
+
81
+ if config['inference']=='generate':
82
+ answers = model(image, question, train=False, inference='generate')
83
+
84
+ for answer, ques_id in zip(answers, question_id):
85
+ ques_id = int(ques_id.item())
86
+ result.append({"question_id":ques_id, "answer":answer})
87
+
88
+ elif config['inference']=='rank':
89
+ answer_ids = model(image, question, answer_candidates, train=False, inference='rank', k_test=config['k_test'])
90
+
91
+ for ques_id, answer_id in zip(question_id, answer_ids):
92
+ result.append({"question_id":int(ques_id.item()), "answer":answer_list[answer_id]})
93
+
94
+ return result
95
+
96
+
97
+ def main(args, config):
98
+ utils.init_distributed_mode(args)
99
+
100
+ device = torch.device(args.device)
101
+
102
+ # fix the seed for reproducibility
103
+ seed = args.seed + utils.get_rank()
104
+ torch.manual_seed(seed)
105
+ np.random.seed(seed)
106
+ random.seed(seed)
107
+ cudnn.benchmark = True
108
+
109
+ #### Dataset ####
110
+ print("Creating vqa datasets")
111
+ datasets = create_dataset('vqa', config)
112
+
113
+ if args.distributed:
114
+ num_tasks = utils.get_world_size()
115
+ global_rank = utils.get_rank()
116
+ samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
117
+ else:
118
+ samplers = [None, None]
119
+
120
+ train_loader, test_loader = create_loader(datasets,samplers,
121
+ batch_size=[config['batch_size_train'],config['batch_size_test']],
122
+ num_workers=[4,4],is_trains=[True, False],
123
+ collate_fns=[vqa_collate_fn,None])
124
+ #### Model ####
125
+ print("Creating model")
126
+ model = blip_vqa(pretrained=config['pretrained'], image_size=config['image_size'],
127
+ vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'])
128
+
129
+ model = model.to(device)
130
+
131
+ model_without_ddp = model
132
+ if args.distributed:
133
+ model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
134
+ model_without_ddp = model.module
135
+
136
+ optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
137
+
138
+ best = 0
139
+ best_epoch = 0
140
+
141
+ print("Start training")
142
+ start_time = time.time()
143
+ for epoch in range(0, config['max_epoch']):
144
+ if not args.evaluate:
145
+ if args.distributed:
146
+ train_loader.sampler.set_epoch(epoch)
147
+
148
+ cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
149
+
150
+ train_stats = train(model, train_loader, optimizer, epoch, device)
151
+
152
+ else:
153
+ break
154
+
155
+ if utils.is_main_process():
156
+ log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
157
+ 'epoch': epoch,
158
+ }
159
+ with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
160
+ f.write(json.dumps(log_stats) + "\n")
161
+
162
+ save_obj = {
163
+ 'model': model_without_ddp.state_dict(),
164
+ 'optimizer': optimizer.state_dict(),
165
+ 'config': config,
166
+ 'epoch': epoch,
167
+ }
168
+ torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
169
+
170
+ dist.barrier()
171
+
172
+ vqa_result = evaluation(model_without_ddp, test_loader, device, config)
173
+ result_file = save_result(vqa_result, args.result_dir, 'vqa_result')
174
+
175
+ total_time = time.time() - start_time
176
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
177
+ print('Training time {}'.format(total_time_str))
178
+
179
+
180
+
181
+ if __name__ == '__main__':
182
+ parser = argparse.ArgumentParser()
183
+ parser.add_argument('--config', default='./configs/vqa.yaml')
184
+ parser.add_argument('--output_dir', default='output/VQA')
185
+ parser.add_argument('--evaluate', action='store_true')
186
+ parser.add_argument('--device', default='cuda')
187
+ parser.add_argument('--seed', default=42, type=int)
188
+ parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
189
+ parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
190
+ parser.add_argument('--distributed', default=True, type=bool)
191
+ args = parser.parse_args()
192
+
193
+ config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
194
+
195
+ args.result_dir = os.path.join(args.output_dir, 'result')
196
+
197
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
198
+ Path(args.result_dir).mkdir(parents=True, exist_ok=True)
199
+
200
+ yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
201
+
202
+ main(args, config)