Spaces:
Running
Running
File size: 22,581 Bytes
24685d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as spectral_norm
from torch.autograd import Function
from utils import util, cielab
import cv2, math, random
def tensor2array(tensors):
arrays = tensors.detach().to("cpu").numpy()
return np.transpose(arrays, (0, 2, 3, 1))
def rgb2gray(color_batch):
#! gray = 0.299*R+0.587*G+0.114*B
gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114
gray_batch = gray_batch.unsqueeze_(1)
return gray_batch
def getParamsAmount(model):
params = list(model.parameters())
count = 0
for var in params:
l = 1
for j in var.size():
l *= j
count += l
return count
def checkAverageGradient(model):
meanGrad, cnt = 0.0, 0
for name, parms in model.named_parameters():
if parms.requires_grad:
meanGrad += torch.mean(torch.abs(parms.grad))
cnt += 1
return meanGrad.item() / cnt
def get_random_mask(N, H, W, minNum, maxNum):
binary_maps = np.zeros((N, H*W), np.float32)
for i in range(N):
locs = random.sample(range(0, H*W), random.randint(minNum,maxNum))
binary_maps[i, locs] = 1
return binary_maps.reshape(N,1,H,W)
def io_user_control(hint_mask, spix_colors, output=True):
cache_dir = '/apdcephfs/private_richardxia'
if output:
print('--- data saving')
mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0
util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1)
fake_gray = torch.zeros_like(spix_colors[:,[0],:,:])
spix_labs = torch.cat((fake_gray,spix_colors), dim=1)
spix_imgs = tensor2array(spix_labs)
util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1)
return hint_mask, spix_colors
else:
print('--- data loading')
mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE)
mask_img = np.expand_dims(mask_img, axis=2) / 255.
hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1)))
hint_mask = hint_mask.unsqueeze(0).cuda()
bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR)
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
rgb_img = np.array(rgb_img / 255., np.float32)
lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
ab_chans = lab_img[1:3,:,:] / 110.
spix_colors = ab_chans.unsqueeze(0).cuda()
return hint_mask.float(), spix_colors.float()
class Quantize(Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
y = x.round()
return y
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
inputX = ctx.saved_tensors
return grad_output
def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None):
## to highlight the seeds with 1-pixel margin
binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps))
center_mask = dilate_seeds(binary_map, kernel_size=kernel_size)
margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask
## drop colors
dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2)
marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays)
if base_ABs is None:
marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs)
else:
marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs)
marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs)
return torch.cat((marked_grays,marked_ABs), dim=1)
def dilate_seeds(gate_maps, kernel_size=3):
N,C,H,W = gate_maps.shape
input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2)
#! Notice: differentiable? just like max pooling?
dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True)
output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1)
#print('-------', input_unf.shape)
return output
class RebalanceLoss(Function):
@staticmethod
def forward(ctx, data_input, weights):
ctx.save_for_backward(weights)
return data_input.clone()
@staticmethod
def backward(ctx, grad_output):
weights, = ctx.saved_tensors
# reweigh gradient pixelwise so that rare colors get a chance to
# contribute
grad_input = grad_output * weights
# second return value is None since we are not interested in the
# gradient with respect to the weights
return grad_input, None
class GetClassWeights:
def __init__(self, cielab, lambda_=0.5, device='cuda'):
prior = torch.from_numpy(cielab.gamut.prior).cuda()
uniform = torch.zeros_like(prior)
uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform)
self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform)
self.weights /= torch.sum(prior * self.weights)
def __call__(self, ab_actual):
return self.weights[ab_actual.argmax(dim=1, keepdim=True)]
class ColorLabel:
def __init__(self, lambda_=0.5, device='cuda'):
self.cielab = cielab.CIELAB()
self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device)
prior = torch.from_numpy(self.cielab.gamut.prior).to(device)
uniform = torch.zeros_like(prior)
uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform)
self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform)
self.weights /= torch.sum(prior * self.weights)
def visualize_label(self, step=3):
height, width = 200, 313*step
label_lab = np.ones((height,width,3), np.float32)
for x in range(313):
ab = self.cielab.q_to_ab[x,:]
label_lab[:,step*x:step*(x+1),1:] = ab / 110.
label_lab[:,:,0] = np.zeros((height,width), np.float32)
return label_lab
@staticmethod
def _gauss_eval(x, mu, sigma):
norm = 1 / (2 * math.pi * sigma)
return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2))
def get_classweights(self, batch_gt_indx):
#return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)]
return self.weights[batch_gt_indx]
def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0):
batch_ab = batch_ab * 110.
n, _, h, w = batch_ab.shape
m = n * h * w
# find nearest neighbours
ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w)
cdist = torch.cdist(self.q_to_ab, ab_.t())
nns = cdist.argsort(dim=0)[:neighbours, :]
# gaussian weighting
nn_gauss = batch_ab.new_zeros(neighbours, m)
for i in range(neighbours):
nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma)
nn_gauss /= nn_gauss.sum(dim=0, keepdim=True)
# expand
bins = self.cielab.gamut.EXPECTED_SIZE
q = batch_ab.new_zeros(bins, m)
q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss
return q.reshape(bins, n, h, w).permute(1, 0, 2, 3)
def decode_ind2ab(self, batch_q, T=0.38):
_, _, h, w = batch_q.shape
batch_q = F.softmax(batch_q, dim=1)
if T%1 == 0:
# take the T-st probable index
sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True)
#print('checking [index]', batch_indexs[:,0:5,5,5])
#print('checking [probs]', sorted_probs[:,0:5,5,5])
batch_indexs = batch_indexs[:,T:T+1,:,:]
#batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:])
ab = torch.stack([
self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1)
for q_i in batch_indexs])
else:
batch_q = torch.exp(batch_q / T)
batch_q /= batch_q.sum(dim=1, keepdim=True)
a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,)))
a = a.unsqueeze(dim=1)
b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,)))
b = b.unsqueeze(dim=1)
ab = torch.cat((a, b), dim=1)
ab = ab / 110.
return ab.type(batch_q.dtype)
def init_spixel_grid(img_height, img_width, spixel_size=16):
# get spixel id for the final assignment
n_spixl_h = int(np.floor(img_height/spixel_size))
n_spixl_w = int(np.floor(img_width/spixel_size))
spixel_height = int(img_height / (1. * n_spixl_h))
spixel_width = int(img_width / (1. * n_spixl_w))
spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w)))
def shift9pos(input, h_shift_unit=1, w_shift_unit=1):
# input should be padding as (c, 1+ height+1, 1+width+1)
input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge')
input_pd = np.expand_dims(input_pd, axis=0)
# assign to ...
top = input_pd[:, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
bottom = input_pd[:, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
left = input_pd[:, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
right = input_pd[:, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit]
bottom_right = input_pd[:, 2 * h_shift_unit:, 2 * w_shift_unit:]
bottom_left = input_pd[:, 2 * h_shift_unit:, :-2 * w_shift_unit]
top_right = input_pd[:, :-2 * h_shift_unit, 2 * w_shift_unit:]
top_left = input_pd[:, :-2 * h_shift_unit, :-2 * w_shift_unit]
shift_tensor = np.concatenate([ top_left, top, top_right,
left, center, right,
bottom_left, bottom, bottom_right], axis=0)
return shift_tensor
spix_idx_tensor_ = shift9pos(spix_values)
spix_idx_tensor = np.repeat(
np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2)
spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float)
#! pixel coord feature maps
all_h_coords = np.arange(0, img_height, 1)
all_w_coords = np.arange(0, img_width, 1)
curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij'))
coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]])
coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float)
return spixel_id_tensor, coord_feat_tensor
def split_spixels(assign_map, spixel_ids):
N,C,H,W = assign_map.shape
spixel_id_map = spixel_ids.expand(N,-1,-1,-1)
assig_max,_ = torch.max(assign_map, dim=1, keepdim=True)
assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda())
## winner take all
new_spixl_map_ = spixel_id_map * assignment_
new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int)
return new_spixl_map
def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False):
def feat_prob_sum(feat_sum, prob_sum, shift_feat):
feat_sum += shift_feat[:, :-1, :, :]
prob_sum += shift_feat[:, -1:, :, :]
return feat_sum, prob_sum
b, _, h, w = input.shape
h_shift_unit = 1
w_shift_unit = 1
p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit)
feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1) # b* (n+1) *h*w
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
send_to_top_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:]
feat_sum = send_to_top_left[:, :-1, :, :].clone()
prob_sum = send_to_top_left[:, -1:, :, :].clone()
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
top = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, :-2 * w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, 2 * w_shift_unit:]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom)
prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit]
feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right)
pooled_feat = feat_sum / (prob_sum + 1e-8)
if need_entry_prob:
return pooled_feat, prob_sum
return pooled_feat
def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25):
N,C,H,W = affinity_map.shape
device = affinity_map.device
assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True)
assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device))
## one_map = (N,1,H,W)
_, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True)
#all_one_map = torch.ones(elem_num_maps.shape).cuda()
#empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map)
return elem_num_maps
def upfeat(input, prob, up_h=2, up_w=2):
# input b*n*H*W downsampled
# prob b*9*h*w
b, c, h, w = input.shape
h_shift = 1
w_shift = 1
p2d = (w_shift, w_shift, h_shift, h_shift)
feat_pd = F.pad(input, p2d, mode='constant', value=0)
gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest')
feat_sum = gt_frm_top_left * prob.narrow(1,0,1)
top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += top * prob.narrow(1, 1, 1)
top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += top_right * prob.narrow(1,2,1)
left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += left * prob.narrow(1, 3, 1)
center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest')
feat_sum += center * prob.narrow(1, 4, 1)
right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += right * prob.narrow(1, 5, 1)
bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += bottom_left * prob.narrow(1, 6, 1)
bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += bottom * prob.narrow(1, 7, 1)
bottom_right = F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
feat_sum += bottom_right * prob.narrow(1, 8, 1)
return feat_sum
def suck_and_spread(self, base_maps, seg_layers):
N,S,H,W = seg_layers.shape
base_maps = base_maps.unsqueeze(1)
seg_layers = seg_layers.unsqueeze(2)
## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W)
mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True))
## normalized to be sum one
weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True))
## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W)
recon_maps = mean_val_layers * weight_layers
return recon_maps.sum(dim=1)
#! copy from Richard Zhang [SIGGRAPH2017]
# RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478]
#------------------------------------------------------------------------------
def rgb2xyz(rgb): # rgb from [0,1]
# xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
# [0.212671, 0.715160, 0.072169],
# [0.019334, 0.119193, 0.950227]])
mask = (rgb > .04045).type(torch.FloatTensor)
if(rgb.is_cuda):
mask = mask.cuda()
rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask)
x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:]
y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:]
z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:]
out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1)
return out
def xyz2rgb(xyz):
# array([[ 3.24048134, -1.53715152, -0.49853633],
# [-0.96925495, 1.87599 , 0.04155593],
# [ 0.05564664, -0.20404134, 1.05731107]])
r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:]
g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:]
b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:]
rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1)
#! sometimes reaches a small negative number, which causes NaNs
rgb = torch.max(rgb,torch.zeros_like(rgb))
mask = (rgb > .0031308).type(torch.FloatTensor)
if(rgb.is_cuda):
mask = mask.cuda()
rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask)
return rgb
def xyz2lab(xyz):
# 0.95047, 1., 1.08883 # white
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
if(xyz.is_cuda):
sc = sc.cuda()
xyz_scale = xyz/sc
mask = (xyz_scale > .008856).type(torch.FloatTensor)
if(xyz_scale.is_cuda):
mask = mask.cuda()
xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask)
L = 116.*xyz_int[:,1,:,:]-16.
a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:])
b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:])
out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1)
return out
def lab2xyz(lab):
y_int = (lab[:,0,:,:]+16.)/116.
x_int = (lab[:,1,:,:]/500.) + y_int
z_int = y_int - (lab[:,2,:,:]/200.)
if(z_int.is_cuda):
z_int = torch.max(torch.Tensor((0,)).cuda(), z_int)
else:
z_int = torch.max(torch.Tensor((0,)), z_int)
out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1)
mask = (out > .2068966).type(torch.FloatTensor)
if(out.is_cuda):
mask = mask.cuda()
out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask)
sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
sc = sc.to(out.device)
out = out*sc
return out
def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110):
#! input rgb: [0,1]
#! output lab: [-1,1]
lab = xyz2lab(rgb2xyz(rgb))
l_rs = (lab[:,[0],:,:]-l_mean) / l_norm
ab_rs = lab[:,1:,:,:] / ab_norm
out = torch.cat((l_rs,ab_rs),dim=1)
return out
def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110):
#! input lab: [-1,1]
#! output rgb: [0,1]
l_ = lab_rs[:,[0],:,:] * l_norm + l_mean
ab = lab_rs[:,1:,:,:] * ab_norm
lab = torch.cat((l_,ab), dim=1)
out = xyz2rgb(lab2xyz(lab))
return out
if __name__ == '__main__':
minL, minA, minB = 999., 999., 999.
maxL, maxA, maxB = 0., 0., 0.
for r in range(256):
print('h',r)
for g in range(256):
for b in range(256):
rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0
#lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
rgb = torch.from_numpy(rgb.transpose((2, 0, 1)))
rgb = rgb.reshape(1,3,1,1)
lab = rgb2lab(rgb)
lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50
lab[:,1:,:,:] = lab[:,1:,:,:] * 110
lab = lab.squeeze()
lab_float = lab.numpy()
#print('zhang vs. cv2:', lab_float, lab_img.squeeze())
minL = min(lab_float[0], minL)
minA = min(lab_float[1], minA)
minB = min(lab_float[2], minB)
maxL = max(lab_float[0], maxL)
maxA = max(lab_float[1], maxA)
maxB = max(lab_float[2], maxB)
print('L:', minL, maxL)
print('A:', minA, maxA)
print('B:', minB, maxB) |