Spaces:
Running
Running
Upload utils/cielab.py
Browse files- utils/cielab.py +71 -0
utils/cielab.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
class ABGamut:
|
5 |
+
RESOURCE_POINTS = "./utils/gamut_pts.npy"
|
6 |
+
RESOURCE_PRIOR = "./utils/gamut_probs.npy"
|
7 |
+
DTYPE = np.float32
|
8 |
+
EXPECTED_SIZE = 313
|
9 |
+
def __init__(self):
|
10 |
+
self.points = np.load(self.RESOURCE_POINTS).astype(self.DTYPE)
|
11 |
+
self.prior = np.load(self.RESOURCE_PRIOR).astype(self.DTYPE)
|
12 |
+
assert self.points.shape == (self.EXPECTED_SIZE, 2)
|
13 |
+
assert self.prior.shape == (self.EXPECTED_SIZE,)
|
14 |
+
|
15 |
+
|
16 |
+
class CIELAB:
|
17 |
+
L_MEAN = 50
|
18 |
+
AB_BINSIZE = 10
|
19 |
+
AB_RANGE = [-110 - AB_BINSIZE // 2, 110 + AB_BINSIZE // 2, AB_BINSIZE]
|
20 |
+
AB_DTYPE = np.float32
|
21 |
+
Q_DTYPE = np.int64
|
22 |
+
|
23 |
+
RGB_RESOLUTION = 101
|
24 |
+
RGB_RANGE = [0, 1, RGB_RESOLUTION]
|
25 |
+
RGB_DTYPE = np.float64
|
26 |
+
|
27 |
+
def __init__(self, gamut=None):
|
28 |
+
self.gamut = gamut if gamut is not None else ABGamut()
|
29 |
+
a, b, self.ab = self._get_ab()
|
30 |
+
self.ab_gamut_mask = self._get_ab_gamut_mask(
|
31 |
+
a, b, self.ab, self.gamut)
|
32 |
+
|
33 |
+
self.ab_to_q = self._get_ab_to_q(self.ab_gamut_mask)
|
34 |
+
self.q_to_ab = self._get_q_to_ab(self.ab, self.ab_gamut_mask)
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def _get_ab(cls):
|
38 |
+
a = np.arange(*cls.AB_RANGE, dtype=cls.AB_DTYPE)
|
39 |
+
b = np.arange(*cls.AB_RANGE, dtype=cls.AB_DTYPE)
|
40 |
+
b_, a_ = np.meshgrid(a, b)
|
41 |
+
ab = np.dstack((a_, b_))
|
42 |
+
return a, b, ab
|
43 |
+
|
44 |
+
@classmethod
|
45 |
+
def _get_ab_gamut_mask(cls, a, b, ab, gamut):
|
46 |
+
ab_gamut_mask = np.full(ab.shape[:-1], False, dtype=bool)
|
47 |
+
a = np.digitize(gamut.points[:, 0], a) - 1
|
48 |
+
b = np.digitize(gamut.points[:, 1], b) - 1
|
49 |
+
for a_, b_ in zip(a, b):
|
50 |
+
ab_gamut_mask[a_, b_] = True
|
51 |
+
|
52 |
+
return ab_gamut_mask
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def _get_ab_to_q(cls, ab_gamut_mask):
|
56 |
+
ab_to_q = np.full(ab_gamut_mask.shape, -1, dtype=cls.Q_DTYPE)
|
57 |
+
ab_to_q[ab_gamut_mask] = np.arange(np.count_nonzero(ab_gamut_mask))
|
58 |
+
|
59 |
+
return ab_to_q
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def _get_q_to_ab(cls, ab, ab_gamut_mask):
|
63 |
+
return ab[ab_gamut_mask] + cls.AB_BINSIZE / 2
|
64 |
+
|
65 |
+
def bin_ab(self, ab):
|
66 |
+
ab_discrete = ((ab + 110) / self.AB_RANGE[2]).astype(int)
|
67 |
+
|
68 |
+
a, b = np.hsplit(ab_discrete.reshape(-1, 2), 2)
|
69 |
+
|
70 |
+
return self.ab_to_q[a, b].reshape(*ab.shape[:2])
|
71 |
+
|