doevent commited on
Commit
43b6a0a
·
1 Parent(s): 2b93fc3

Upload models/anchor_gen.py

Browse files
Files changed (1) hide show
  1. models/anchor_gen.py +107 -0
models/anchor_gen.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Function
5
+ from models import basic, clusterkit
6
+ import pdb
7
+
8
+ class AnchorAnalysis:
9
+ def __init__(self, mode, colorLabeler):
10
+ ## anchor generating mode: 1.random; 2.clustering
11
+ self.mode = mode
12
+ self.colorLabeler = colorLabeler
13
+
14
+ def _detect_correlation(self, data_tensors, color_probs, hint_masks, thres=0.1):
15
+ N,C,H,W = data_tensors.shape
16
+ ## (N,C,HW)
17
+ data_vecs = data_tensors.flatten(2)
18
+ prob_vecs = color_probs.flatten(2)
19
+ mask_vecs = hint_masks.flatten(2)
20
+ #anchor_data = torch.masked_select(data_vecs, mask_vecs.bool()).view(N,C,-1)
21
+ #anchor_prob = torch.masked_select(prob_vecs, mask_vecs.bool()).view(N,313,-1)
22
+ #_,_,K = anchor_data.shape
23
+ anchor_mask = torch.matmul(mask_vecs.permute(0,2,1), mask_vecs)
24
+ cosine_sim = True
25
+ ## non-similarity matrix
26
+ if cosine_sim:
27
+ norm_data = F.normalize(data_vecs, p=2, dim=1)
28
+ ## (N,HW,HW) = (N,HW,C) X (N,C,HW)
29
+ corr_matrix = torch.matmul(norm_data.permute(0,2,1), norm_data)
30
+ ## remapping: [-1.0,1.0] to [0.0,1.0], and convert into dis-similarity
31
+ dist_matrix = 1.0 - 0.5*(corr_matrix + 1.0)
32
+ else:
33
+ ## (N,HW,HW) = (N,HW,C) X (N,C,HW)
34
+ XtX = torch.matmul(data_vecs.permute(0,2,1), data_vecs)
35
+ diag_vec = torch.diagonal(XtX, dim1=-2, dim2=-1)
36
+ A = diag_vec.unsqueeze(1).repeat(1,H*W,1)
37
+ At = diag_vec.unsqueeze(2).repeat(1,1,H*W)
38
+ dist_matrix = A - 2*XtX + At
39
+ #dist_matrix = dist_matrix + 1e7*torch.eye(K).to(data_tensors.device).repeat(N,1,1)
40
+ ## for debug use
41
+ K = 8
42
+ anchor_adj_matrix = torch.masked_select(dist_matrix, anchor_mask.bool()).view(N,K,K)
43
+ ## dectect connected nodes
44
+ adj_matrix = torch.where((dist_matrix < thres) & (anchor_mask > 0), torch.ones_like(dist_matrix), torch.zeros_like(dist_matrix))
45
+ adj_matrix = torch.matmul(adj_matrix, adj_matrix)
46
+ adj_matrix = adj_matrix / (1e-7+adj_matrix)
47
+ ## merge nodes
48
+ ## (N,K,C) = (N,K,K) X (N,K,C)
49
+ anchor_prob = torch.matmul(adj_matrix, prob_vecs.permute(0,2,1)) / torch.sum(adj_matrix, dim=2, keepdim=True)
50
+ updated_prob_vecs = anchor_prob.permute(0,2,1) * mask_vecs + (1-mask_vecs) * prob_vecs
51
+ color_probs = updated_prob_vecs.view(N,313,H,W)
52
+ return color_probs, anchor_adj_matrix
53
+
54
+ def _sample_anchor_colors(self, pred_prob, hint_mask, T=0):
55
+ N,C,H,W = pred_prob.shape
56
+ topk = 10
57
+ assert T < topk
58
+ sorted_probs, batch_indexs = torch.sort(pred_prob, dim=1, descending=True)
59
+ ## (N,topk,H,W,1)
60
+ topk_probs = torch.softmax(sorted_probs[:,:topk,:,:], dim=1).unsqueeze(4)
61
+ topk_indexs = batch_indexs[:,:topk,:,:]
62
+ topk_ABs = torch.stack([self.colorLabeler.q_to_ab.index_select(0, q_i.flatten()).reshape(topk,H,W,2)
63
+ for q_i in topk_indexs])
64
+ ## (N,topk,H,W,2)
65
+ topk_ABs = topk_ABs / 110.0
66
+ ## choose the most distinctive 3 colors for each anchor
67
+ if T == 0:
68
+ sampled_ABs = topk_ABs[:,0,:,:,:]
69
+ elif T == 1:
70
+ sampled_AB0 = topk_ABs[:,[0],:,:,:]
71
+ internal_diff = torch.norm(topk_ABs-sampled_AB0, p=2, dim=4, keepdim=True)
72
+ _, batch_indexs = torch.sort(internal_diff, dim=1, descending=True)
73
+ ## (N,1,H,W,2)
74
+ selected_index = batch_indexs[:,[0],:,:,:].expand([-1,-1,-1,-1,2])
75
+ sampled_ABs = torch.gather(topk_ABs, 1, selected_index)
76
+ sampled_ABs = sampled_ABs.squeeze(1)
77
+ else:
78
+ sampled_AB0 = topk_ABs[:,[0],:,:,:]
79
+ internal_diff = torch.norm(topk_ABs-sampled_AB0, p=2, dim=4, keepdim=True)
80
+ _, batch_indexs = torch.sort(internal_diff, dim=1, descending=True)
81
+ selected_index = batch_indexs[:,[0],:,:,:].expand([-1,-1,-1,-1,2])
82
+ sampled_AB1 = torch.gather(topk_ABs, 1, selected_index)
83
+ internal_diff2 = torch.norm(topk_ABs-sampled_AB1, p=2, dim=4, keepdim=True)
84
+ _, batch_indexs = torch.sort(internal_diff+internal_diff2, dim=1, descending=True)
85
+ ## (N,1,H,W,2)
86
+ selected_index = batch_indexs[:,[T-2],:,:,:].expand([-1,-1,-1,-1,2])
87
+ sampled_ABs = torch.gather(topk_ABs, 1, selected_index)
88
+ sampled_ABs = sampled_ABs.squeeze(1)
89
+
90
+ return sampled_ABs.permute(0,3,1,2)
91
+
92
+ def __call__(self, data_tensors, n_anchors, spixel_sizes, use_sklearn_kmeans=False):
93
+ N,C,H,W = data_tensors.shape
94
+ if self.mode == 'clustering':
95
+ ## clusters map: (N,K,H,W)
96
+ cluster_mask = clusterkit.batch_kmeans_pytorch(data_tensors, n_anchors, 'euclidean', use_sklearn_kmeans)
97
+ #noises = torch.rand(N,1,H,W).to(cluster_mask.device)
98
+ perturb_factors = spixel_sizes
99
+ cluster_prob = cluster_mask + perturb_factors * 0.01
100
+ hint_mask_layers = F.one_hot(torch.argmax(cluster_prob.flatten(2), dim=-1), num_classes=H*W).float()
101
+ hint_mask = torch.sum(hint_mask_layers, dim=1, keepdim=True).view(N,1,H,W)
102
+ else:
103
+ #print('----------hello, random!')
104
+ cluster_mask = torch.zeros(N,n_anchors,H,W).to(data_tensors.device)
105
+ binary_mask = basic.get_random_mask(N, H, W, minNum=n_anchors, maxNum=n_anchors)
106
+ hint_mask = torch.from_numpy(binary_mask).to(data_tensors.device)
107
+ return hint_mask, cluster_mask