Spaces:
Running
Running
Upload models/network.py
Browse files- models/network.py +352 -0
models/network.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import init
|
5 |
+
import torchvision
|
6 |
+
import torch.nn.utils.spectral_norm as spectral_norm
|
7 |
+
import math
|
8 |
+
|
9 |
+
|
10 |
+
class ConvBlock(nn.Module):
|
11 |
+
def __init__(self, inChannels, outChannels, convNum, normLayer=None):
|
12 |
+
super(ConvBlock, self).__init__()
|
13 |
+
self.inConv = nn.Sequential(
|
14 |
+
nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
layers = []
|
18 |
+
for _ in range(convNum - 1):
|
19 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
20 |
+
layers.append(nn.ReLU(inplace=True))
|
21 |
+
if not (normLayer is None):
|
22 |
+
layers.append(normLayer(outChannels))
|
23 |
+
self.conv = nn.Sequential(*layers)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.inConv(x)
|
27 |
+
x = self.conv(x)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
class ResidualBlock(nn.Module):
|
32 |
+
def __init__(self, channels, normLayer=None):
|
33 |
+
super(ResidualBlock, self).__init__()
|
34 |
+
layers = []
|
35 |
+
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1))
|
36 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
37 |
+
if not (normLayer is None):
|
38 |
+
layers.append(normLayer(channels))
|
39 |
+
layers.append(nn.ReLU(inplace=True))
|
40 |
+
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1))
|
41 |
+
if not (normLayer is None):
|
42 |
+
layers.append(normLayer(channels))
|
43 |
+
self.conv = nn.Sequential(*layers)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
residual = self.conv(x)
|
47 |
+
return F.relu(x + residual, inplace=True)
|
48 |
+
|
49 |
+
|
50 |
+
class ResidualBlockSN(nn.Module):
|
51 |
+
def __init__(self, channels, normLayer=None):
|
52 |
+
super(ResidualBlockSN, self).__init__()
|
53 |
+
layers = []
|
54 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
55 |
+
layers.append(nn.LeakyReLU(0.2, True))
|
56 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
57 |
+
if not (normLayer is None):
|
58 |
+
layers.append(normLayer(channels))
|
59 |
+
self.conv = nn.Sequential(*layers)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
residual = self.conv(x)
|
63 |
+
return F.leaky_relu(x + residual, 2e-1, inplace=True)
|
64 |
+
|
65 |
+
|
66 |
+
class DownsampleBlock(nn.Module):
|
67 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
68 |
+
super(DownsampleBlock, self).__init__()
|
69 |
+
layers = []
|
70 |
+
layers.append(nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=2))
|
71 |
+
layers.append(nn.ReLU(inplace=True))
|
72 |
+
for _ in range(convNum - 1):
|
73 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
74 |
+
layers.append(nn.ReLU(inplace=True))
|
75 |
+
if not (normLayer is None):
|
76 |
+
layers.append(normLayer(outChannels))
|
77 |
+
self.conv = nn.Sequential(*layers)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
return self.conv(x)
|
81 |
+
|
82 |
+
|
83 |
+
class UpsampleBlock(nn.Module):
|
84 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
85 |
+
super(UpsampleBlock, self).__init__()
|
86 |
+
self.conv1 = nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=1)
|
87 |
+
self.combine = nn.Conv2d(2 * outChannels, outChannels, kernel_size=3, padding=1)
|
88 |
+
layers = []
|
89 |
+
for _ in range(convNum - 1):
|
90 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
91 |
+
layers.append(nn.ReLU(inplace=True))
|
92 |
+
if not (normLayer is None):
|
93 |
+
layers.append(normLayer(outChannels))
|
94 |
+
self.conv2 = nn.Sequential(*layers)
|
95 |
+
|
96 |
+
def forward(self, x, x0):
|
97 |
+
x = self.conv1(x)
|
98 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
99 |
+
x = self.combine(torch.cat((x, x0), 1))
|
100 |
+
x = F.relu(x)
|
101 |
+
return self.conv2(x)
|
102 |
+
|
103 |
+
|
104 |
+
class UpsampleBlockSN(nn.Module):
|
105 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
106 |
+
super(UpsampleBlockSN, self).__init__()
|
107 |
+
self.conv1 = spectral_norm(nn.Conv2d(inChannels, outChannels, kernel_size=3, stride=1, padding=1))
|
108 |
+
self.shortcut = spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, stride=1, padding=1))
|
109 |
+
layers = []
|
110 |
+
for _ in range(convNum - 1):
|
111 |
+
layers.append(spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)))
|
112 |
+
layers.append(nn.LeakyReLU(0.2, True))
|
113 |
+
if not (normLayer is None):
|
114 |
+
layers.append(normLayer(outChannels))
|
115 |
+
self.conv2 = nn.Sequential(*layers)
|
116 |
+
|
117 |
+
def forward(self, x, x0):
|
118 |
+
x = self.conv1(x)
|
119 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
120 |
+
x = x + self.shortcut(x0)
|
121 |
+
x = F.leaky_relu(x, 2e-1)
|
122 |
+
return self.conv2(x)
|
123 |
+
|
124 |
+
|
125 |
+
class HourGlass2(nn.Module):
|
126 |
+
def __init__(self, inChannel=3, outChannel=1, resNum=3, normLayer=None):
|
127 |
+
super(HourGlass2, self).__init__()
|
128 |
+
self.inConv = ConvBlock(inChannel, 64, convNum=2, normLayer=normLayer)
|
129 |
+
self.down1 = DownsampleBlock(64, 128, convNum=2, normLayer=normLayer)
|
130 |
+
self.down2 = DownsampleBlock(128, 256, convNum=2, normLayer=normLayer)
|
131 |
+
self.residual = nn.Sequential(*[ResidualBlock(256) for _ in range(resNum)])
|
132 |
+
self.up2 = UpsampleBlock(256, 128, convNum=3, normLayer=normLayer)
|
133 |
+
self.up1 = UpsampleBlock(128, 64, convNum=3, normLayer=normLayer)
|
134 |
+
self.outConv = nn.Conv2d(64, outChannel, kernel_size=3, padding=1)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
f1 = self.inConv(x)
|
138 |
+
f2 = self.down1(f1)
|
139 |
+
f3 = self.down2(f2)
|
140 |
+
r3 = self.residual(f3)
|
141 |
+
r2 = self.up2(r3, f2)
|
142 |
+
r1 = self.up1(r2, f1)
|
143 |
+
y = self.outConv(r1)
|
144 |
+
return y
|
145 |
+
|
146 |
+
|
147 |
+
class ColorProbNet(nn.Module):
|
148 |
+
def __init__(self, inChannel=1, outChannel=2, with_SA=False):
|
149 |
+
super(ColorProbNet, self).__init__()
|
150 |
+
BNFunc = nn.BatchNorm2d
|
151 |
+
# conv1: 256
|
152 |
+
conv1_2 = [spectral_norm(nn.Conv2d(inChannel, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
153 |
+
conv1_2 += [spectral_norm(nn.Conv2d(64, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
154 |
+
conv1_2 += [BNFunc(64, affine=True)]
|
155 |
+
# conv2: 128
|
156 |
+
conv2_3 = [spectral_norm(nn.Conv2d(64, 128, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
157 |
+
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
158 |
+
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
159 |
+
conv2_3 += [BNFunc(128, affine=True)]
|
160 |
+
# conv3: 64
|
161 |
+
conv3_3 = [spectral_norm(nn.Conv2d(128, 256, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
162 |
+
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
163 |
+
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
164 |
+
conv3_3 += [BNFunc(256, affine=True)]
|
165 |
+
# conv4: 32
|
166 |
+
conv4_3 = [spectral_norm(nn.Conv2d(256, 512, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
167 |
+
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
168 |
+
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
169 |
+
conv4_3 += [BNFunc(512, affine=True)]
|
170 |
+
# conv5: 32
|
171 |
+
conv5_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
172 |
+
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
173 |
+
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
174 |
+
conv5_3 += [BNFunc(512, affine=True)]
|
175 |
+
# conv6: 32
|
176 |
+
conv6_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
177 |
+
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
178 |
+
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
179 |
+
conv6_3 += [BNFunc(512, affine=True),]
|
180 |
+
if with_SA:
|
181 |
+
conv6_3 += [Self_Attn(512)]
|
182 |
+
# conv7: 32
|
183 |
+
conv7_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
184 |
+
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
185 |
+
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
186 |
+
conv7_3 += [BNFunc(512, affine=True)]
|
187 |
+
# conv8: 64
|
188 |
+
conv8up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(512, 256, 3, stride=1, padding=1),]
|
189 |
+
conv3short8 = [nn.Conv2d(256, 256, 3, stride=1, padding=1),]
|
190 |
+
conv8_3 = [nn.ReLU(True),]
|
191 |
+
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),]
|
192 |
+
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),]
|
193 |
+
conv8_3 += [BNFunc(256, affine=True),]
|
194 |
+
# conv9: 128
|
195 |
+
conv9up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(256, 128, 3, stride=1, padding=1),]
|
196 |
+
conv9_2 = [nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(True),]
|
197 |
+
conv9_2 += [BNFunc(128, affine=True)]
|
198 |
+
# conv10: 64
|
199 |
+
conv10up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(128, 64, 3, stride=1, padding=1),]
|
200 |
+
conv10_2 = [nn.ReLU(True),]
|
201 |
+
conv10_2 += [nn.Conv2d(64, outChannel, 3, stride=1, padding=1), nn.ReLU(True),]
|
202 |
+
|
203 |
+
self.conv1_2 = nn.Sequential(*conv1_2)
|
204 |
+
self.conv2_3 = nn.Sequential(*conv2_3)
|
205 |
+
self.conv3_3 = nn.Sequential(*conv3_3)
|
206 |
+
self.conv4_3 = nn.Sequential(*conv4_3)
|
207 |
+
self.conv5_3 = nn.Sequential(*conv5_3)
|
208 |
+
self.conv6_3 = nn.Sequential(*conv6_3)
|
209 |
+
self.conv7_3 = nn.Sequential(*conv7_3)
|
210 |
+
self.conv8up = nn.Sequential(*conv8up)
|
211 |
+
self.conv3short8 = nn.Sequential(*conv3short8)
|
212 |
+
self.conv8_3 = nn.Sequential(*conv8_3)
|
213 |
+
self.conv9up = nn.Sequential(*conv9up)
|
214 |
+
self.conv9_2 = nn.Sequential(*conv9_2)
|
215 |
+
self.conv10up = nn.Sequential(*conv10up)
|
216 |
+
self.conv10_2 = nn.Sequential(*conv10_2)
|
217 |
+
# claffificaton output
|
218 |
+
#self.model_class = nn.Sequential(*[nn.Conv2d(256, 313, kernel_size=1, padding=0, stride=1),])
|
219 |
+
|
220 |
+
def forward(self, input_grays):
|
221 |
+
f1_2 = self.conv1_2(input_grays)
|
222 |
+
f2_3 = self.conv2_3(f1_2)
|
223 |
+
f3_3 = self.conv3_3(f2_3)
|
224 |
+
f4_3 = self.conv4_3(f3_3)
|
225 |
+
f5_3 = self.conv5_3(f4_3)
|
226 |
+
f6_3 = self.conv6_3(f5_3)
|
227 |
+
f7_3 = self.conv7_3(f6_3)
|
228 |
+
f8_up = self.conv8up(f7_3) + self.conv3short8(f3_3)
|
229 |
+
f8_3 = self.conv8_3(f8_up)
|
230 |
+
f9_up = self.conv9up(f8_3)
|
231 |
+
f9_2 = self.conv9_2(f9_up)
|
232 |
+
f10_up = self.conv10up(f9_2)
|
233 |
+
f10_2 = self.conv10_2(f10_up)
|
234 |
+
out_feats = f10_2
|
235 |
+
#out_probs = self.model_class(f8_3)
|
236 |
+
return out_feats
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1):
|
241 |
+
if batchNorm:
|
242 |
+
return nn.Sequential(
|
243 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=False),
|
244 |
+
nn.BatchNorm2d(out_planes),
|
245 |
+
nn.LeakyReLU(0.1)
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
return nn.Sequential(
|
249 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True),
|
250 |
+
nn.LeakyReLU(0.1)
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
def deconv(in_planes, out_planes):
|
255 |
+
return nn.Sequential(
|
256 |
+
nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
257 |
+
nn.LeakyReLU(0.1)
|
258 |
+
)
|
259 |
+
|
260 |
+
class SpixelNet(nn.Module):
|
261 |
+
def __init__(self, inChannel=3, outChannel=9, batchNorm=True):
|
262 |
+
super(SpixelNet,self).__init__()
|
263 |
+
self.batchNorm = batchNorm
|
264 |
+
self.conv0a = conv(self.batchNorm, inChannel, 16, kernel_size=3)
|
265 |
+
self.conv0b = conv(self.batchNorm, 16, 16, kernel_size=3)
|
266 |
+
self.conv1a = conv(self.batchNorm, 16, 32, kernel_size=3, stride=2)
|
267 |
+
self.conv1b = conv(self.batchNorm, 32, 32, kernel_size=3)
|
268 |
+
self.conv2a = conv(self.batchNorm, 32, 64, kernel_size=3, stride=2)
|
269 |
+
self.conv2b = conv(self.batchNorm, 64, 64, kernel_size=3)
|
270 |
+
self.conv3a = conv(self.batchNorm, 64, 128, kernel_size=3, stride=2)
|
271 |
+
self.conv3b = conv(self.batchNorm, 128, 128, kernel_size=3)
|
272 |
+
self.conv4a = conv(self.batchNorm, 128, 256, kernel_size=3, stride=2)
|
273 |
+
self.conv4b = conv(self.batchNorm, 256, 256, kernel_size=3)
|
274 |
+
self.deconv3 = deconv(256, 128)
|
275 |
+
self.conv3_1 = conv(self.batchNorm, 256, 128)
|
276 |
+
self.deconv2 = deconv(128, 64)
|
277 |
+
self.conv2_1 = conv(self.batchNorm, 128, 64)
|
278 |
+
self.deconv1 = deconv(64, 32)
|
279 |
+
self.conv1_1 = conv(self.batchNorm, 64, 32)
|
280 |
+
self.deconv0 = deconv(32, 16)
|
281 |
+
self.conv0_1 = conv(self.batchNorm, 32, 16)
|
282 |
+
self.pred_mask0 = nn.Conv2d(16, outChannel, kernel_size=3, stride=1, padding=1, bias=True)
|
283 |
+
self.softmax = nn.Softmax(1)
|
284 |
+
for m in self.modules():
|
285 |
+
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
|
286 |
+
init.kaiming_normal_(m.weight, 0.1)
|
287 |
+
if m.bias is not None:
|
288 |
+
init.constant_(m.bias, 0)
|
289 |
+
elif isinstance(m, nn.BatchNorm2d):
|
290 |
+
init.constant_(m.weight, 1)
|
291 |
+
init.constant_(m.bias, 0)
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
out1 = self.conv0b(self.conv0a(x)) #5*5
|
295 |
+
out2 = self.conv1b(self.conv1a(out1)) #11*11
|
296 |
+
out3 = self.conv2b(self.conv2a(out2)) #23*23
|
297 |
+
out4 = self.conv3b(self.conv3a(out3)) #47*47
|
298 |
+
out5 = self.conv4b(self.conv4a(out4)) #95*95
|
299 |
+
out_deconv3 = self.deconv3(out5)
|
300 |
+
concat3 = torch.cat((out4, out_deconv3), 1)
|
301 |
+
out_conv3_1 = self.conv3_1(concat3)
|
302 |
+
out_deconv2 = self.deconv2(out_conv3_1)
|
303 |
+
concat2 = torch.cat((out3, out_deconv2), 1)
|
304 |
+
out_conv2_1 = self.conv2_1(concat2)
|
305 |
+
out_deconv1 = self.deconv1(out_conv2_1)
|
306 |
+
concat1 = torch.cat((out2, out_deconv1), 1)
|
307 |
+
out_conv1_1 = self.conv1_1(concat1)
|
308 |
+
out_deconv0 = self.deconv0(out_conv1_1)
|
309 |
+
concat0 = torch.cat((out1, out_deconv0), 1)
|
310 |
+
out_conv0_1 = self.conv0_1(concat0)
|
311 |
+
mask0 = self.pred_mask0(out_conv0_1)
|
312 |
+
prob0 = self.softmax(mask0)
|
313 |
+
return prob0
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
## VGG architecter, used for the perceptual loss using a pretrained VGG network
|
318 |
+
class VGG19(torch.nn.Module):
|
319 |
+
def __init__(self, requires_grad=False, local_pretrained_path='checkpoints/vgg19.pth'):
|
320 |
+
super().__init__()
|
321 |
+
#vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
|
322 |
+
model = torchvision.models.vgg19()
|
323 |
+
model.load_state_dict(torch.load(local_pretrained_path))
|
324 |
+
vgg_pretrained_features = model.features
|
325 |
+
|
326 |
+
self.slice1 = torch.nn.Sequential()
|
327 |
+
self.slice2 = torch.nn.Sequential()
|
328 |
+
self.slice3 = torch.nn.Sequential()
|
329 |
+
self.slice4 = torch.nn.Sequential()
|
330 |
+
self.slice5 = torch.nn.Sequential()
|
331 |
+
for x in range(2):
|
332 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
333 |
+
for x in range(2, 7):
|
334 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
335 |
+
for x in range(7, 12):
|
336 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
337 |
+
for x in range(12, 21):
|
338 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
339 |
+
for x in range(21, 30):
|
340 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
341 |
+
if not requires_grad:
|
342 |
+
for param in self.parameters():
|
343 |
+
param.requires_grad = False
|
344 |
+
|
345 |
+
def forward(self, X):
|
346 |
+
h_relu1 = self.slice1(X)
|
347 |
+
h_relu2 = self.slice2(h_relu1)
|
348 |
+
h_relu3 = self.slice3(h_relu2)
|
349 |
+
h_relu4 = self.slice4(h_relu3)
|
350 |
+
h_relu5 = self.slice5(h_relu4)
|
351 |
+
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
|
352 |
+
return out
|