Spaces:
Runtime error
Runtime error
File size: 6,910 Bytes
89c278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import PIL.Image
import cv2
import torch
from diffusers import ControlNetModel
from loguru import logger
from iopaint.schema import InpaintRequest, ModelType
from .base import DiffusionInpaintModel
from .helper.controlnet_preprocess import (
make_canny_control_image,
make_openpose_control_image,
make_depth_control_image,
make_inpaint_control_image,
)
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
from .original_sd_configs import get_config_files
from .utils import (
get_scheduler,
handle_from_pretrained_exceptions,
get_torch_dtype,
enable_low_mem,
is_local_files_only,
)
class ControlNet(DiffusionInpaintModel):
name = "controlnet"
pad_mod = 8
min_size = 512
@property
def lcm_lora_id(self):
if self.model_info.model_type in [
ModelType.DIFFUSERS_SD,
ModelType.DIFFUSERS_SD_INPAINT,
]:
return "latent-consistency/lcm-lora-sdv1-5"
if self.model_info.model_type in [
ModelType.DIFFUSERS_SDXL,
ModelType.DIFFUSERS_SDXL_INPAINT,
]:
return "latent-consistency/lcm-lora-sdxl"
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
def init_model(self, device: torch.device, **kwargs):
model_info = kwargs["model_info"]
controlnet_method = kwargs["controlnet_method"]
self.model_info = model_info
self.controlnet_method = controlnet_method
model_kwargs = {
**kwargs.get("pipe_components", {}),
"local_files_only": is_local_files_only(**kwargs),
}
self.local_files_only = model_kwargs["local_files_only"]
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
"cpu_offload", False
)
if disable_nsfw_checker:
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(
dict(
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
)
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
self.torch_dtype = torch_dtype
if model_info.model_type in [
ModelType.DIFFUSERS_SD,
ModelType.DIFFUSERS_SD_INPAINT,
]:
from diffusers import (
StableDiffusionControlNetInpaintPipeline as PipeClass,
)
elif model_info.model_type in [
ModelType.DIFFUSERS_SDXL,
ModelType.DIFFUSERS_SDXL_INPAINT,
]:
from diffusers import (
StableDiffusionXLControlNetInpaintPipeline as PipeClass,
)
controlnet = ControlNetModel.from_pretrained(
pretrained_model_name_or_path=controlnet_method,
resume_download=True,
local_files_only=model_kwargs["local_files_only"],
torch_dtype=self.torch_dtype,
)
if model_info.is_single_file_diffusers:
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
model_kwargs["num_in_channels"] = 4
else:
model_kwargs["num_in_channels"] = 9
self.model = PipeClass.from_single_file(
model_info.path,
controlnet=controlnet,
load_safety_checker=not disable_nsfw_checker,
torch_dtype=torch_dtype,
config_files=get_config_files(),
**model_kwargs,
)
else:
self.model = handle_from_pretrained_exceptions(
PipeClass.from_pretrained,
pretrained_model_name_or_path=model_info.path,
controlnet=controlnet,
variant="fp16",
torch_dtype=torch_dtype,
**model_kwargs,
)
enable_low_mem(self.model, kwargs.get("low_mem", False))
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.callback = kwargs.pop("callback", None)
def switch_controlnet_method(self, new_method: str):
self.controlnet_method = new_method
controlnet = ControlNetModel.from_pretrained(
new_method,
resume_download=True,
local_files_only=self.local_files_only,
torch_dtype=self.torch_dtype,
).to(self.model.device)
self.model.controlnet = controlnet
def _get_control_image(self, image, mask):
if "canny" in self.controlnet_method:
control_image = make_canny_control_image(image)
elif "openpose" in self.controlnet_method:
control_image = make_openpose_control_image(image)
elif "depth" in self.controlnet_method:
control_image = make_depth_control_image(image)
elif "inpaint" in self.controlnet_method:
control_image = make_inpaint_control_image(image, mask)
else:
raise NotImplementedError(f"{self.controlnet_method} not implemented")
return control_image
def forward(self, image, mask, config: InpaintRequest):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
scheduler_config = self.model.scheduler.config
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
self.model.scheduler = scheduler
img_h, img_w = image.shape[:2]
control_image = self._get_control_image(image, mask)
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
image = PIL.Image.fromarray(image)
output = self.model(
image=image,
mask_image=mask_image,
control_image=control_image,
prompt=config.prompt,
negative_prompt=config.negative_prompt,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
output_type="np",
callback_on_step_end=self.callback,
height=img_h,
width=img_w,
generator=torch.manual_seed(config.sd_seed),
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
|