Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
from iopaint.helper import ( | |
load_jit_model, | |
download_model, | |
get_cache_path_by_url, | |
boxes_from_mask, | |
resize_max_size, | |
norm_img, | |
) | |
from .base import InpaintModel | |
from iopaint.schema import InpaintRequest | |
MIGAN_MODEL_URL = os.environ.get( | |
"MIGAN_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/migan/migan_traced.pt", | |
) | |
MIGAN_MODEL_MD5 = os.environ.get("MIGAN_MODEL_MD5", "76eb3b1a71c400ee3290524f7a11b89c") | |
class MIGAN(InpaintModel): | |
name = "migan" | |
min_size = 512 | |
pad_mod = 512 | |
pad_to_square = True | |
is_erase_model = True | |
def init_model(self, device, **kwargs): | |
self.model = load_jit_model(MIGAN_MODEL_URL, device, MIGAN_MODEL_MD5).eval() | |
def download(): | |
download_model(MIGAN_MODEL_URL, MIGAN_MODEL_MD5) | |
def is_downloaded() -> bool: | |
return os.path.exists(get_cache_path_by_url(MIGAN_MODEL_URL)) | |
def __call__(self, image, mask, config: InpaintRequest): | |
""" | |
images: [H, W, C] RGB, not normalized | |
masks: [H, W] | |
return: BGR IMAGE | |
""" | |
if image.shape[0] == 512 and image.shape[1] == 512: | |
return self._pad_forward(image, mask, config) | |
boxes = boxes_from_mask(mask) | |
crop_result = [] | |
config.hd_strategy_crop_margin = 128 | |
for box in boxes: | |
crop_image, crop_mask, crop_box = self._crop_box(image, mask, box, config) | |
origin_size = crop_image.shape[:2] | |
resize_image = resize_max_size(crop_image, size_limit=512) | |
resize_mask = resize_max_size(crop_mask, size_limit=512) | |
inpaint_result = self._pad_forward(resize_image, resize_mask, config) | |
# only paste masked area result | |
inpaint_result = cv2.resize( | |
inpaint_result, | |
(origin_size[1], origin_size[0]), | |
interpolation=cv2.INTER_CUBIC, | |
) | |
original_pixel_indices = crop_mask < 127 | |
inpaint_result[original_pixel_indices] = crop_image[:, :, ::-1][ | |
original_pixel_indices | |
] | |
crop_result.append((inpaint_result, crop_box)) | |
inpaint_result = image[:, :, ::-1].copy() | |
for crop_image, crop_box in crop_result: | |
x1, y1, x2, y2 = crop_box | |
inpaint_result[y1:y2, x1:x2, :] = crop_image | |
return inpaint_result | |
def forward(self, image, mask, config: InpaintRequest): | |
"""Input images and output images have same size | |
images: [H, W, C] RGB | |
masks: [H, W] mask area == 255 | |
return: BGR IMAGE | |
""" | |
image = norm_img(image) # [0, 1] | |
image = image * 2 - 1 # [0, 1] -> [-1, 1] | |
mask = (mask > 120) * 255 | |
mask = norm_img(mask) | |
image = torch.from_numpy(image).unsqueeze(0).to(self.device) | |
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) | |
erased_img = image * (1 - mask) | |
input_image = torch.cat([0.5 - mask, erased_img], dim=1) | |
output = self.model(input_image) | |
output = ( | |
(output.permute(0, 2, 3, 1) * 127.5 + 127.5) | |
.round() | |
.clamp(0, 255) | |
.to(torch.uint8) | |
) | |
output = output[0].cpu().numpy() | |
cur_res = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return cur_res | |