devai-demo / conversation.py
aakash0017's picture
change max_iteration
a8dcf10
# from langchain.document_loaders import TextLoader
# import pinecone
# from langchain.vectorstores import Pinecone
# import os
# from transformers import AutoTokenizer, AutoModel
# from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
# from langchain.agents.agent_toolkits import create_retriever_tool
# from langchain.chat_models import ChatOpenAI
# import torch
# from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory)
# from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
# from langchain.schema.messages import SystemMessage
# from langchain.prompts import MessagesPlaceholder
# import gradio as gr
# import time
# from db_func import insert_one
# from global_variable_module import gobal_input, global_output
# import random
# def get_bert_embeddings(sentence):
# embeddings = []
# input_ids = tokenizer.encode(sentence, return_tensors="pt")
# with torch.no_grad():
# output = model(input_ids)
# embedding = output.last_hidden_state[:,0,:].numpy().tolist()
# return embedding
# model_name = "BAAI/bge-base-en-v1.5"
# model = AutoModel.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
# tokenizer = AutoTokenizer.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
# prompt_file = open("prompts/version_2.txt", "r").read()
# pinecone.init(
# api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
# environment=os.getenv("PINECONE_ENV"), # next to api key in console
# )
# index_name = "ophtal-knowledge-base"
# index = pinecone.Index(index_name)
# vectorstore = Pinecone(index, get_bert_embeddings, "text")
# retriever = vectorstore.as_retriever()
# tool = create_retriever_tool(
# retriever,
# "search_ophtal-knowledge-base",
# "Searches and returns documents regarding the ophtal-knowledge-base.",
# )
# tools = [tool]
# system_message = SystemMessage(content=prompt_file)
# memory_key='history'
# llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2)
# prompt = OpenAIFunctionsAgent.create_prompt(
# system_message=system_message,
# extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
# )
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt)
# user_name = None
# def run(input_):
# output = agent_executor({"input": input_})
# output_text = output["output"]
# source_text = ""
# doc_text = ""
# global_input = input_
# global_output = output_text
# if len(output["intermediate_steps"])>0:
# documents = output["intermediate_steps"][0][1]
# sources = []
# docs = []
# for doc in documents:
# if doc.metadata["source"] not in sources:
# sources.append(doc.metadata["source"])
# docs.append(doc.page_content)
# for i in range(len(sources)):
# temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ")
# source_text += f"{i+1}. {temp}\n"
# doc_text += f"{i+1}. {docs[i]}\n"
# # output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}"
# # output_text = f"{output_text}"
# doc_to_insert = {
# "user": user_name,
# "input": input_,
# "output": output_text,
# "source": source_text,
# "documents": doc_text
# }
# insert_one(doc_to_insert)
# return output_text
# def make_conversation(message, history):
# text_ = run(message)
# for i in range(len(text_)):
# time.sleep(0.001)
# yield text_[: i+1]
# def auth_function(username, password):
# user_name = username
# return username == password
# def random_response(message, accuracy, history):
# print(type(message))
# print(message)
# print(accuracy)
# out = random.choice(["Yes", "No"])
# gobal_input = out
# # open a txt file
# with open("function hit", "a+") as f:
# f.write(message)
# return out
from langchain.document_loaders import TextLoader
import pinecone
from langchain.vectorstores import Pinecone
import os
from transformers import AutoTokenizer, AutoModel
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.chat_models import ChatOpenAI
import torch
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory)
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.schema.messages import SystemMessage
from langchain.prompts import MessagesPlaceholder
import gradio as gr
import time
from db_func import insert_one
from langchain.agents import AgentExecutor
import re
import wordninja
def clean_text(text):
text = text.strip().lower()
output_paragraph = ' '.join(''.join(text.split()).split(' '))
words = wordninja.split(output_paragraph)
return ' '.join(words)
def get_bert_embeddings(sentence):
embeddings = []
input_ids = tokenizer.encode(sentence, return_tensors="pt")
with torch.no_grad():
output = model(input_ids)
embedding = output.last_hidden_state[:,0,:].numpy().tolist()
return embedding
model_name = "BAAI/bge-base-en-v1.5"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt_file = open("prompts/version_2.txt", "r").read()
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
environment=os.getenv("PINECONE_ENV"), # next to api key in console
)
index_name = "ophtal-knowledge-base"
index = pinecone.Index(index_name)
vectorstore = Pinecone(index, get_bert_embeddings, "text")
retriever = vectorstore.as_retriever()
tool = create_retriever_tool(
retriever,
"search_ophtal-knowledge-base",
"Searches and returns documents regarding the ophtal-knowledge-base.",
)
tools = [tool]
system_message = SystemMessage(content="You are an assistant to ophthamologists and your name is 'Dr.V AI'. Help users answer medical questions. You are supposed to answer only medical questions and not general questions.")
memory_key='history'
llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2)
# llm = ChatOpenAI(openai_api_key="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", model="gpt-4", temperature=0.2)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=system_message,
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
)
memory = AgentTokenBufferMemory(memory_key=memory_key, llm=llm, max_token_limit=4000)
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt, )
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=False,
return_intermediate_steps=True,
max_iterations = 2
)
user_name = None
def run(input_):
output = agent_executor({"input": input_})
output_text = output["output"]
print(output_text)
source_text = ""
doc_text = ""
if len(output["intermediate_steps"])>0:
documents = output["intermediate_steps"][0][1]
sources = []
docs = []
for doc in documents:
if doc.metadata["source"] not in sources:
sources.append(doc.metadata["source"])
docs.append(doc.page_content)
for i in range(len(sources)):
temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ")
source_text += f"{i+1}. {temp}\n"
cleaned_text = re.sub(r'[^a-zA-Z0-9\s]', '', clean_text(docs[i]))
doc_text += f"{i+1}. {cleaned_text}\n"
# output_text = f"{output_text} \n\nSources: \n{source_text}"
output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}"
# output_text = f"{output_text}"
doc_to_insert = {
"user": user_name,
"input": input_,
"output": output_text,
"source": source_text,
"documents": doc_text
}
insert_one(doc_to_insert)
return output_text
def make_conversation(message, history):
text_ = run(message)
for i in range(len(text_)):
time.sleep(0.001)
yield text_[: i+1]
def auth_function(username, password):
user_name = username
return username == password