Spaces:
Runtime error
Runtime error
# from langchain.document_loaders import TextLoader | |
# import pinecone | |
# from langchain.vectorstores import Pinecone | |
# import os | |
# from transformers import AutoTokenizer, AutoModel | |
# from langchain.agents.agent_toolkits import create_conversational_retrieval_agent | |
# from langchain.agents.agent_toolkits import create_retriever_tool | |
# from langchain.chat_models import ChatOpenAI | |
# import torch | |
# from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory) | |
# from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent | |
# from langchain.schema.messages import SystemMessage | |
# from langchain.prompts import MessagesPlaceholder | |
# import gradio as gr | |
# import time | |
# from db_func import insert_one | |
# from global_variable_module import gobal_input, global_output | |
# import random | |
# def get_bert_embeddings(sentence): | |
# embeddings = [] | |
# input_ids = tokenizer.encode(sentence, return_tensors="pt") | |
# with torch.no_grad(): | |
# output = model(input_ids) | |
# embedding = output.last_hidden_state[:,0,:].numpy().tolist() | |
# return embedding | |
# model_name = "BAAI/bge-base-en-v1.5" | |
# model = AutoModel.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e") | |
# tokenizer = AutoTokenizer.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e") | |
# prompt_file = open("prompts/version_2.txt", "r").read() | |
# pinecone.init( | |
# api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io | |
# environment=os.getenv("PINECONE_ENV"), # next to api key in console | |
# ) | |
# index_name = "ophtal-knowledge-base" | |
# index = pinecone.Index(index_name) | |
# vectorstore = Pinecone(index, get_bert_embeddings, "text") | |
# retriever = vectorstore.as_retriever() | |
# tool = create_retriever_tool( | |
# retriever, | |
# "search_ophtal-knowledge-base", | |
# "Searches and returns documents regarding the ophtal-knowledge-base.", | |
# ) | |
# tools = [tool] | |
# system_message = SystemMessage(content=prompt_file) | |
# memory_key='history' | |
# llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2) | |
# prompt = OpenAIFunctionsAgent.create_prompt( | |
# system_message=system_message, | |
# extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], | |
# ) | |
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt) | |
# user_name = None | |
# def run(input_): | |
# output = agent_executor({"input": input_}) | |
# output_text = output["output"] | |
# source_text = "" | |
# doc_text = "" | |
# global_input = input_ | |
# global_output = output_text | |
# if len(output["intermediate_steps"])>0: | |
# documents = output["intermediate_steps"][0][1] | |
# sources = [] | |
# docs = [] | |
# for doc in documents: | |
# if doc.metadata["source"] not in sources: | |
# sources.append(doc.metadata["source"]) | |
# docs.append(doc.page_content) | |
# for i in range(len(sources)): | |
# temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ") | |
# source_text += f"{i+1}. {temp}\n" | |
# doc_text += f"{i+1}. {docs[i]}\n" | |
# # output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}" | |
# # output_text = f"{output_text}" | |
# doc_to_insert = { | |
# "user": user_name, | |
# "input": input_, | |
# "output": output_text, | |
# "source": source_text, | |
# "documents": doc_text | |
# } | |
# insert_one(doc_to_insert) | |
# return output_text | |
# def make_conversation(message, history): | |
# text_ = run(message) | |
# for i in range(len(text_)): | |
# time.sleep(0.001) | |
# yield text_[: i+1] | |
# def auth_function(username, password): | |
# user_name = username | |
# return username == password | |
# def random_response(message, accuracy, history): | |
# print(type(message)) | |
# print(message) | |
# print(accuracy) | |
# out = random.choice(["Yes", "No"]) | |
# gobal_input = out | |
# # open a txt file | |
# with open("function hit", "a+") as f: | |
# f.write(message) | |
# return out | |
from langchain.document_loaders import TextLoader | |
import pinecone | |
from langchain.vectorstores import Pinecone | |
import os | |
from transformers import AutoTokenizer, AutoModel | |
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent | |
from langchain.agents.agent_toolkits import create_retriever_tool | |
from langchain.chat_models import ChatOpenAI | |
import torch | |
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory) | |
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent | |
from langchain.schema.messages import SystemMessage | |
from langchain.prompts import MessagesPlaceholder | |
import gradio as gr | |
import time | |
from db_func import insert_one | |
from langchain.agents import AgentExecutor | |
import re | |
import wordninja | |
def clean_text(text): | |
text = text.strip().lower() | |
output_paragraph = ' '.join(''.join(text.split()).split(' ')) | |
words = wordninja.split(output_paragraph) | |
return ' '.join(words) | |
def get_bert_embeddings(sentence): | |
embeddings = [] | |
input_ids = tokenizer.encode(sentence, return_tensors="pt") | |
with torch.no_grad(): | |
output = model(input_ids) | |
embedding = output.last_hidden_state[:,0,:].numpy().tolist() | |
return embedding | |
model_name = "BAAI/bge-base-en-v1.5" | |
model = AutoModel.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
prompt_file = open("prompts/version_2.txt", "r").read() | |
pinecone.init( | |
api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io | |
environment=os.getenv("PINECONE_ENV"), # next to api key in console | |
) | |
index_name = "ophtal-knowledge-base" | |
index = pinecone.Index(index_name) | |
vectorstore = Pinecone(index, get_bert_embeddings, "text") | |
retriever = vectorstore.as_retriever() | |
tool = create_retriever_tool( | |
retriever, | |
"search_ophtal-knowledge-base", | |
"Searches and returns documents regarding the ophtal-knowledge-base.", | |
) | |
tools = [tool] | |
system_message = SystemMessage(content="You are an assistant to ophthamologists and your name is 'Dr.V AI'. Help users answer medical questions. You are supposed to answer only medical questions and not general questions.") | |
memory_key='history' | |
llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2) | |
# llm = ChatOpenAI(openai_api_key="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", model="gpt-4", temperature=0.2) | |
prompt = OpenAIFunctionsAgent.create_prompt( | |
system_message=system_message, | |
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], | |
) | |
memory = AgentTokenBufferMemory(memory_key=memory_key, llm=llm, max_token_limit=4000) | |
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt, ) | |
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) | |
agent_executor = AgentExecutor( | |
agent=agent, | |
tools=tools, | |
memory=memory, | |
verbose=False, | |
return_intermediate_steps=True, | |
max_iterations = 2 | |
) | |
user_name = None | |
def run(input_): | |
output = agent_executor({"input": input_}) | |
output_text = output["output"] | |
print(output_text) | |
source_text = "" | |
doc_text = "" | |
if len(output["intermediate_steps"])>0: | |
documents = output["intermediate_steps"][0][1] | |
sources = [] | |
docs = [] | |
for doc in documents: | |
if doc.metadata["source"] not in sources: | |
sources.append(doc.metadata["source"]) | |
docs.append(doc.page_content) | |
for i in range(len(sources)): | |
temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ") | |
source_text += f"{i+1}. {temp}\n" | |
cleaned_text = re.sub(r'[^a-zA-Z0-9\s]', '', clean_text(docs[i])) | |
doc_text += f"{i+1}. {cleaned_text}\n" | |
# output_text = f"{output_text} \n\nSources: \n{source_text}" | |
output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}" | |
# output_text = f"{output_text}" | |
doc_to_insert = { | |
"user": user_name, | |
"input": input_, | |
"output": output_text, | |
"source": source_text, | |
"documents": doc_text | |
} | |
insert_one(doc_to_insert) | |
return output_text | |
def make_conversation(message, history): | |
text_ = run(message) | |
for i in range(len(text_)): | |
time.sleep(0.001) | |
yield text_[: i+1] | |
def auth_function(username, password): | |
user_name = username | |
return username == password | |