import os import json import gradio as gr import tempfile from PIL import Image, ImageDraw, ImageFont import cv2 from typing import Tuple, Optional import torch import spaces from pathlib import Path import time # Import your highlight detection code from video_highlight_detector import ( load_model, BatchedVideoHighlightDetector, get_video_duration_seconds ) def load_examples(json_path: str) -> dict: """Load pre-computed examples from JSON file""" with open(json_path, 'r') as f: return json.load(f) def format_duration(seconds: int) -> str: """Convert seconds to MM:SS or HH:MM:SS format""" hours = seconds // 3600 minutes = (seconds % 3600) // 60 secs = seconds % 60 if hours > 0: return f"{hours}:{minutes:02d}:{secs:02d}" return f"{minutes}:{secs:02d}" def add_watermark(video_path: str, output_path: str): """Add watermark to video using ffmpeg""" watermark_text = "🤗 SmolVLM2 Highlight" command = f"""ffmpeg -i {video_path} -vf \ "drawtext=text='{watermark_text}':fontcolor=white:fontsize=24:box=1:boxcolor=black@0.5:\ boxborderw=5:x=w-tw-10:y=h-th-10" \ -codec:a copy {output_path}""" os.system(command) def process_video( video_path: str, progress = gr.Progress() ) -> Tuple[str, str, str, str]: """ Process video and return paths to: - Processed video with watermark - Video description - Highlight types - Error message (if any) """ try: # Check video duration duration = get_video_duration_seconds(video_path) if duration > 1200: # 20 minutes return None, None, None, "Video must be shorter than 20 minutes" # Load model (could be cached) progress(0.1, desc="Loading model...") model, processor = load_model() detector = BatchedVideoHighlightDetector(model, processor) # Analyze video content progress(0.2, desc="Analyzing video content...") video_description = detector.analyze_video_content(video_path) # Determine highlights progress(0.3, desc="Determining highlight types...") highlight_types = detector.determine_highlights(video_description) # Create highlight video progress(0.4, desc="Detecting and extracting highlights...") with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: temp_output = tmp_file.name detector.create_highlight_video(video_path, temp_output) # Add watermark progress(0.9, desc="Adding watermark...") output_path = temp_output.replace('.mp4', '_watermark.mp4') add_watermark(temp_output, output_path) # Cleanup os.unlink(temp_output) # Truncate description and highlights if too long video_description = video_description[:500] + "..." if len(video_description) > 500 else video_description highlight_types = highlight_types[:500] + "..." if len(highlight_types) > 500 else highlight_types return output_path, video_description, highlight_types, None except Exception as e: return None, None, None, f"Error processing video: {str(e)}" def create_ui(examples_path: str): """Create the Gradio interface with optional thumbnails""" examples_data = load_examples(examples_path) with gr.Blocks() as app: gr.Markdown("# Video Highlight Generator") gr.Markdown("Upload a video (max 20 minutes) and get an automated highlight reel!") # Pre-computed examples section with gr.Row(): gr.Markdown("## Example Results") for example in examples_data["examples"]: with gr.Row(): with gr.Column(): # Use thumbnail if available, otherwise default to video video_component = gr.Video( example["original"]["url"], label=f"Original ({format_duration(example['original']['duration_seconds'])})", thumbnail=example["original"].get("thumbnail_url", None) ) gr.Markdown(example["title"]) with gr.Column(): gr.Video( example["highlights"]["url"], label=f"Highlights ({format_duration(example['highlights']['duration_seconds'])})", thumbnail=example["highlights"].get("thumbnail_url", None) ) with gr.Accordion("Analysis", open=False): gr.Markdown(example["analysis"]["video_description"]) gr.Markdown(example["analysis"]["highlight_types"]) # Upload section gr.Markdown("## Try It Yourself!") with gr.Row(): input_video = gr.Video( label="Upload your video (max 20 minutes)", source="upload" ) # Results section (initially hidden) with gr.Row(visible=False) as results_row: with gr.Column(): video_description = gr.Markdown(label="Video Analysis") with gr.Column(): highlight_types = gr.Markdown(label="Detected Highlights") with gr.Row(visible=False) as output_row: output_video = gr.Video(label="Highlight Video") download_btn = gr.Button("Download Highlights") # Error message error_msg = gr.Markdown(visible=False) # Process video when uploaded def on_upload(video): results_row.visible = False output_row.visible = False error_msg.visible = False if not video: error_msg.visible = True error_msg.value = "Please upload a video" return None, None, None, error_msg output_path, desc, highlights, err = process_video(video) if err: error_msg.visible = True error_msg.value = err return None, None, None, error_msg results_row.visible = True output_row.visible = True return output_path, desc, highlights, "" input_video.change( on_upload, inputs=[input_video], outputs=[output_video, video_description, highlight_types, error_msg] ) # Download button download_btn.click( lambda x: x, inputs=[output_video], outputs=[output_video] ) return app if __name__ == "__main__": app = create_ui("video_spec.json") app.launch()