Spaces:
Sleeping
Sleeping
David Thomas
commited on
Commit
·
4b0ce20
1
Parent(s):
1f13352
base
Browse files- .env +1 -0
- app.py +40 -0
- cow1.jpg +0 -0
- requirements.txt +4 -0
- test.ipynb +255 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
HUGGINGFACE_KEY = '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'
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Streamlit UI for object detection with DETR. """
|
2 |
+
|
3 |
+
# Use a pipeline as a high-level helper
|
4 |
+
from transformers import pipeline
|
5 |
+
import streamlit as st
|
6 |
+
from PIL import Image
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
pipe = pipeline("object-detection", model="facebook/detr-resnet-101")
|
10 |
+
|
11 |
+
# Set the title
|
12 |
+
st.title("Vision Quest 2")
|
13 |
+
|
14 |
+
results = None
|
15 |
+
image = None
|
16 |
+
|
17 |
+
# Create a file uploader and set the upload type to images
|
18 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
19 |
+
|
20 |
+
if uploaded_file:
|
21 |
+
upload_image_button = st.button("Upload Image")
|
22 |
+
if upload_image_button:
|
23 |
+
with st.spinner("Uploading Image...")
|
24 |
+
# Convert the image to a file object
|
25 |
+
image = Image.open(uploaded_file)
|
26 |
+
|
27 |
+
# Process the image through the pipeline
|
28 |
+
results = pipe(image)
|
29 |
+
|
30 |
+
col1, col2 = st.columns(2)
|
31 |
+
if image and results:
|
32 |
+
with col1:
|
33 |
+
st.image(image, use_column_width=True)
|
34 |
+
with col2:
|
35 |
+
# Display the individual objects, the bounding boxes, and the confidence
|
36 |
+
# And then display the total number of each type of object
|
37 |
+
# Create a dataframe to hold the results
|
38 |
+
df = pd.DataFrame(results)
|
39 |
+
st.dataframe(df)
|
40 |
+
|
cow1.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
streamlit
|
3 |
+
PIL
|
4 |
+
pandas
|
test.ipynb
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"application/vnd.jupyter.widget-view+json": {
|
11 |
+
"model_id": "27a09705e50844998302f7953225305f",
|
12 |
+
"version_major": 2,
|
13 |
+
"version_minor": 0
|
14 |
+
},
|
15 |
+
"text/plain": [
|
16 |
+
"Downloading (…)lve/main/config.json: 0%| | 0.00/4.38k [00:00<?, ?B/s]"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
"metadata": {},
|
20 |
+
"output_type": "display_data"
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"data": {
|
24 |
+
"application/vnd.jupyter.widget-view+json": {
|
25 |
+
"model_id": "b08c2c5730864354b556eee28bf230fe",
|
26 |
+
"version_major": 2,
|
27 |
+
"version_minor": 0
|
28 |
+
},
|
29 |
+
"text/plain": [
|
30 |
+
"Downloading model.safetensors: 0%| | 0.00/243M [00:00<?, ?B/s]"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
"metadata": {},
|
34 |
+
"output_type": "display_data"
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"data": {
|
38 |
+
"application/vnd.jupyter.widget-view+json": {
|
39 |
+
"model_id": "58774a0b69624064b710db8d601fca0e",
|
40 |
+
"version_major": 2,
|
41 |
+
"version_minor": 0
|
42 |
+
},
|
43 |
+
"text/plain": [
|
44 |
+
"Downloading model.safetensors: 0%| | 0.00/179M [00:00<?, ?B/s]"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "display_data"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"name": "stderr",
|
52 |
+
"output_type": "stream",
|
53 |
+
"text": [
|
54 |
+
"Some weights of the model checkpoint at facebook/detr-resnet-101 were not used when initializing DetrForObjectDetection: ['model.backbone.conv_encoder.model.layer1.0.downsample.1.num_batches_tracked', 'model.backbone.conv_encoder.model.layer3.0.downsample.1.num_batches_tracked', 'model.backbone.conv_encoder.model.layer2.0.downsample.1.num_batches_tracked', 'model.backbone.conv_encoder.model.layer4.0.downsample.1.num_batches_tracked']\n",
|
55 |
+
"- This IS expected if you are initializing DetrForObjectDetection from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
56 |
+
"- This IS NOT expected if you are initializing DetrForObjectDetection from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"data": {
|
61 |
+
"application/vnd.jupyter.widget-view+json": {
|
62 |
+
"model_id": "b5e6dfa6bff2482faefa2663727a576e",
|
63 |
+
"version_major": 2,
|
64 |
+
"version_minor": 0
|
65 |
+
},
|
66 |
+
"text/plain": [
|
67 |
+
"Downloading (…)rocessor_config.json: 0%| | 0.00/274 [00:00<?, ?B/s]"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"metadata": {},
|
71 |
+
"output_type": "display_data"
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "stderr",
|
75 |
+
"output_type": "stream",
|
76 |
+
"text": [
|
77 |
+
"Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration.\n",
|
78 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. Please specify in `size['longest_edge'] instead`.\n"
|
79 |
+
]
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"source": [
|
83 |
+
"# Use a pipeline as a high-level helper\n",
|
84 |
+
"from transformers import pipeline\n",
|
85 |
+
"\n",
|
86 |
+
"pipe = pipeline(\"object-detection\", model=\"facebook/detr-resnet-101\")"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 3,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"data": {
|
96 |
+
"text/plain": [
|
97 |
+
"[{'score': 0.9799804091453552,\n",
|
98 |
+
" 'label': 'cow',\n",
|
99 |
+
" 'box': {'xmin': 601, 'ymin': 366, 'xmax': 638, 'ymax': 429}},\n",
|
100 |
+
" {'score': 0.9278073906898499,\n",
|
101 |
+
" 'label': 'cow',\n",
|
102 |
+
" 'box': {'xmin': 51, 'ymin': 266, 'xmax': 123, 'ymax': 319}},\n",
|
103 |
+
" {'score': 0.9865541458129883,\n",
|
104 |
+
" 'label': 'cow',\n",
|
105 |
+
" 'box': {'xmin': 440, 'ymin': 328, 'xmax': 499, 'ymax': 391}},\n",
|
106 |
+
" {'score': 0.9414395093917847,\n",
|
107 |
+
" 'label': 'cow',\n",
|
108 |
+
" 'box': {'xmin': 291, 'ymin': 337, 'xmax': 373, 'ymax': 402}},\n",
|
109 |
+
" {'score': 0.995155930519104,\n",
|
110 |
+
" 'label': 'cow',\n",
|
111 |
+
" 'box': {'xmin': 711, 'ymin': 523, 'xmax': 847, 'ymax': 603}},\n",
|
112 |
+
" {'score': 0.9969741106033325,\n",
|
113 |
+
" 'label': 'cow',\n",
|
114 |
+
" 'box': {'xmin': 1042, 'ymin': 588, 'xmax': 1221, 'ymax': 705}},\n",
|
115 |
+
" {'score': 0.9744983911514282,\n",
|
116 |
+
" 'label': 'cow',\n",
|
117 |
+
" 'box': {'xmin': 1474, 'ymin': 408, 'xmax': 1598, 'ymax': 483}},\n",
|
118 |
+
" {'score': 0.9618602991104126,\n",
|
119 |
+
" 'label': 'cow',\n",
|
120 |
+
" 'box': {'xmin': 584, 'ymin': 684, 'xmax': 779, 'ymax': 810}},\n",
|
121 |
+
" {'score': 0.9941285848617554,\n",
|
122 |
+
" 'label': 'cow',\n",
|
123 |
+
" 'box': {'xmin': 1125, 'ymin': 486, 'xmax': 1249, 'ymax': 579}},\n",
|
124 |
+
" {'score': 0.9376370906829834,\n",
|
125 |
+
" 'label': 'cow',\n",
|
126 |
+
" 'box': {'xmin': 1103, 'ymin': 298, 'xmax': 1172, 'ymax': 341}},\n",
|
127 |
+
" {'score': 0.9970544576644897,\n",
|
128 |
+
" 'label': 'cow',\n",
|
129 |
+
" 'box': {'xmin': 1025, 'ymin': 668, 'xmax': 1211, 'ymax': 805}},\n",
|
130 |
+
" {'score': 0.9351339340209961,\n",
|
131 |
+
" 'label': 'cow',\n",
|
132 |
+
" 'box': {'xmin': 228, 'ymin': 338, 'xmax': 297, 'ymax': 401}},\n",
|
133 |
+
" {'score': 0.9771629571914673,\n",
|
134 |
+
" 'label': 'cow',\n",
|
135 |
+
" 'box': {'xmin': 1063, 'ymin': 361, 'xmax': 1110, 'ymax': 422}},\n",
|
136 |
+
" {'score': 0.9911984801292419,\n",
|
137 |
+
" 'label': 'cow',\n",
|
138 |
+
" 'box': {'xmin': 712, 'ymin': 429, 'xmax': 764, 'ymax': 505}},\n",
|
139 |
+
" {'score': 0.9905621409416199,\n",
|
140 |
+
" 'label': 'cow',\n",
|
141 |
+
" 'box': {'xmin': 1073, 'ymin': 446, 'xmax': 1171, 'ymax': 524}},\n",
|
142 |
+
" {'score': 0.9994051456451416,\n",
|
143 |
+
" 'label': 'cow',\n",
|
144 |
+
" 'box': {'xmin': 594, 'ymin': 593, 'xmax': 1017, 'ymax': 814}},\n",
|
145 |
+
" {'score': 0.9972768425941467,\n",
|
146 |
+
" 'label': 'cow',\n",
|
147 |
+
" 'box': {'xmin': 1399, 'ymin': 593, 'xmax': 1655, 'ymax': 753}},\n",
|
148 |
+
" {'score': 0.993872880935669,\n",
|
149 |
+
" 'label': 'cow',\n",
|
150 |
+
" 'box': {'xmin': 4, 'ymin': 711, 'xmax': 225, 'ymax': 815}},\n",
|
151 |
+
" {'score': 0.9839267134666443,\n",
|
152 |
+
" 'label': 'cow',\n",
|
153 |
+
" 'box': {'xmin': 844, 'ymin': 343, 'xmax': 918, 'ymax': 395}},\n",
|
154 |
+
" {'score': 0.977581799030304,\n",
|
155 |
+
" 'label': 'cow',\n",
|
156 |
+
" 'box': {'xmin': 1179, 'ymin': 367, 'xmax': 1240, 'ymax': 425}},\n",
|
157 |
+
" {'score': 0.9804152250289917,\n",
|
158 |
+
" 'label': 'cow',\n",
|
159 |
+
" 'box': {'xmin': 610, 'ymin': 322, 'xmax': 672, 'ymax': 384}}]"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"execution_count": 3,
|
163 |
+
"metadata": {},
|
164 |
+
"output_type": "execute_result"
|
165 |
+
}
|
166 |
+
],
|
167 |
+
"source": [
|
168 |
+
"pipe('./cow1.jpg')"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"cell_type": "code",
|
173 |
+
"execution_count": 4,
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": [
|
177 |
+
"results = pipe('./cow1.jpg')"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"cell_type": "code",
|
182 |
+
"execution_count": 5,
|
183 |
+
"metadata": {},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"data": {
|
187 |
+
"text/plain": [
|
188 |
+
"{'score': 0.9799804091453552,\n",
|
189 |
+
" 'label': 'cow',\n",
|
190 |
+
" 'box': {'xmin': 601, 'ymin': 366, 'xmax': 638, 'ymax': 429}}"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
"execution_count": 5,
|
194 |
+
"metadata": {},
|
195 |
+
"output_type": "execute_result"
|
196 |
+
}
|
197 |
+
],
|
198 |
+
"source": [
|
199 |
+
"results[0]"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 6,
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [
|
207 |
+
{
|
208 |
+
"name": "stdout",
|
209 |
+
"output_type": "stream",
|
210 |
+
"text": [
|
211 |
+
"Total cows: 21\n"
|
212 |
+
]
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"source": [
|
216 |
+
"# Add together all of the results to get the total number of cows\n",
|
217 |
+
"total_cows = 0\n",
|
218 |
+
"for result in results:\n",
|
219 |
+
" if result[\"label\"] == \"cow\":\n",
|
220 |
+
" total_cows += 1\n",
|
221 |
+
"\n",
|
222 |
+
"print(f\"Total cows: {total_cows}\")"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"execution_count": null,
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": []
|
231 |
+
}
|
232 |
+
],
|
233 |
+
"metadata": {
|
234 |
+
"kernelspec": {
|
235 |
+
"display_name": "py310",
|
236 |
+
"language": "python",
|
237 |
+
"name": "python3"
|
238 |
+
},
|
239 |
+
"language_info": {
|
240 |
+
"codemirror_mode": {
|
241 |
+
"name": "ipython",
|
242 |
+
"version": 3
|
243 |
+
},
|
244 |
+
"file_extension": ".py",
|
245 |
+
"mimetype": "text/x-python",
|
246 |
+
"name": "python",
|
247 |
+
"nbconvert_exporter": "python",
|
248 |
+
"pygments_lexer": "ipython3",
|
249 |
+
"version": "3.10.12"
|
250 |
+
},
|
251 |
+
"orig_nbformat": 4
|
252 |
+
},
|
253 |
+
"nbformat": 4,
|
254 |
+
"nbformat_minor": 2
|
255 |
+
}
|