File size: 7,013 Bytes
bbc1c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st 
import altair as alt
import plotly.express as px 
import pandas as pd 
import numpy as np 
from datetime import datetime
from transformers import pipeline

# Loading pre-trained emotion classifier pipeline
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-roberta-large", top_k=None)

from track_utils import create_page_visited_table, add_page_visited_details, view_all_page_visited_details, add_prediction_details, view_all_prediction_details, create_emotionclf_table

def predict_emotions(docx):
    results = emotion_classifier(docx)
    results_sorted = sorted(results[0], key=lambda x: x['score'], reverse=True)
    return results_sorted[0]['label']

def get_prediction_proba(docx):
    results = emotion_classifier(docx)
    return {result['label']: result['score'] for result in results[0]}


def set_bg_hack_url():
    '''
    A function to unpack an image from url and set as bg.
    Returns
    -------
    The background.
    '''
        
    st.markdown(
         f"""
         <style>
         .stApp {{
             background: url("https://png.pngtree.com/background/20210709/original/pngtree-simple-technology-business-line-picture-image_938206.jpg");
             background-size: cover;
         }}
         /* General body styling */
         body {{
             font-family: 'Arial', sans-serif;
         }}
         /* Sidebar styling */
         [data-testid="stSidebar"] {{
             background: linear-gradient(180deg, #52079A, #062879); /* Gradient from dark blue to orange */
             color: white;
         }}
         [data-testid="stSidebar"] .css-1d391kg {{
             color: white;
         }}
         /* Title and headers */
         h1, h2, h3 {{
             color: #FFFFFF; /* White */
         }}
         /* Custom button style */
         .stButton button {{
             background-color: #004080; /* Dark Blue */
             color: white;
             border-radius: 8px;
             border: none;
             font-size: 16px;
             padding: 10px 20px;
             cursor: pointer;
         }}
         .stButton button:hover {{
             background-color: #FFA500; /* Orange */
         }}
         /* DataFrame styling */
         .css-17z80pu {{
             background-color: #d3d3d3; /* Grey */
             border: 1px solid #ddd;
             border-radius: 4px;
             padding: 10px;
         }}
         /* Custom chart area */
         .stAltairChart {{
             background-color: #d3d3d3; /* Grey */
             border: 1px solid #ddd;
             border-radius: 5px;
             padding: 10px;
         }}
         /* Text area styling */
         .css-91z34k {{
             background-color: #e0e0e0; /* Light Grey for Text Area Box */
             border: 1px solid #ddd;
             border-radius: 4px;
             padding: 10px;
         }}
         /* Top bar styling */
         header[data-testid="stHeader"] {{
             background: rgba(0, 0, 0, 0); /* Transparent */
         }}
         </style>
         """,
         unsafe_allow_html=True
     )



emotions_emoji_dict = {"anger":"๐Ÿ˜ ","disgust":"๐Ÿคฎ", "fear":"๐Ÿ˜จ๐Ÿ˜ฑ", "happiness":"๐Ÿค—", "joy":"๐Ÿ˜‚", "neutral":"๐Ÿ˜", "sadness":"๐Ÿ˜”", "surprise":"๐Ÿ˜ฎ"}

def main():
    st.set_page_config(page_title="Emotion Classifier App: Veer", layout="wide")
    set_bg_hack_url()

    st.sidebar.title("Menu")
    menu = ["๐Ÿ  Home", "๐Ÿ“Š Monitor", "โ„น๏ธ About"]
    choice = st.sidebar.selectbox("Select an Option", menu)
    

    create_page_visited_table()
    create_emotionclf_table()
    
    if choice == "๐Ÿ  Home":
        add_page_visited_details("Home", datetime.now())
        st.title("Emotion Classifier App")
        st.subheader("Enter text to analyze its emotion")
        
        with st.form(key='emotion_clf_form'):
            raw_text = st.text_area("Type Here")
            submit_text = st.form_submit_button(label='Submit')

        if submit_text:
            prediction = predict_emotions(raw_text)
            probability = get_prediction_proba(raw_text)
            
            add_prediction_details(raw_text, prediction, max(probability.values()), datetime.now())

            col1, col2 = st.columns(2)

            with col1:
                st.success("Input Text")
                st.write(raw_text)

                st.success("Sentiment Prediction")
                emoji_icon = emotions_emoji_dict[prediction]
                st.write(f"{prediction}: {emoji_icon}")
                st.write(f"Confidence: {max(probability.values()):.2f}")

            with col2:
                st.success("Prediction Probability")
                proba_df = pd.DataFrame(list(probability.items()), columns=["emotions", "probability"])

                fig = alt.Chart(proba_df).mark_bar().encode(x='emotions', y='probability', color='emotions')
                st.altair_chart(fig, use_container_width=True)

    elif choice == "๐Ÿ“Š Monitor":
        add_page_visited_details("Monitor", datetime.now())
        st.title("App Monitoring")

        with st.expander("Page Metrics"):
            page_visited_details = pd.DataFrame(view_all_page_visited_details(), columns=['Pagename','Time_of_Visit'])
            st.dataframe(page_visited_details)    

            pg_count = page_visited_details['Pagename'].value_counts().rename_axis('Pagename').reset_index(name='Counts')
            c = alt.Chart(pg_count).mark_bar().encode(x='Pagename', y='Counts', color='Pagename')
            st.altair_chart(c, use_container_width=True)    

            p = px.pie(pg_count, values='Counts', names='Pagename')
            st.plotly_chart(p, use_container_width=True)

        with st.expander('Emotion Classifier Metrics'):  #initially showed Unicode decode error: utf-8 codec cant decode byte; fix:
            try:
                prediction_details = view_all_prediction_details()
                df_emotions = pd.DataFrame(prediction_details, columns=['Rawtext','Prediction','Probability','Time_of_Visit'])

                # fix for unicodedecodeerror: Ensuring all columns are converted to strings to avoid decoding errors.
                df_emotions = df_emotions.applymap(lambda x: x.decode('utf-8', 'ignore') if isinstance(x, bytes) else str(x))
                st.dataframe(df_emotions)

                prediction_count = df_emotions['Prediction'].value_counts().rename_axis('Prediction').reset_index(name='Counts')
                pc = alt.Chart(prediction_count).mark_bar().encode(x='Prediction', y='Counts', color='Prediction')
                st.altair_chart(pc, use_container_width=True)
            except UnicodeDecodeError as e:
                st.error(f"Error decoding data: {e}")
            
    else:
        st.title("About")
        add_page_visited_details("About", datetime.now())
        st.subheader("Emotion Classifier App")
        st.text("A simple application to classify emotions from text.")

if __name__ == '__main__':
    main()