Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF") | |
model = AutoModelForCausalLM.from_pretrained( | |
"bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF", | |
device_map="auto", | |
torch_dtype="auto", | |
resume_download=True # Enable resumable downloads | |
) | |
# Define a function for generating text | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_length=200) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create a Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Qwen 2.5 Coder 32B Text Generator", | |
description="Enter a prompt to generate text using the Qwen2.5-Coder-32B-Instruct-abliterated-GGUF model." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch() | |