dd / app.py
dwdwadawdwa's picture
Update app.py
36b8c47 verified
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF")
model = AutoModelForCausalLM.from_pretrained(
"bartowski/Qwen2.5-Coder-32B-Instruct-abliterated-GGUF",
device_map="auto",
torch_dtype="auto",
resume_download=True # Enable resumable downloads
)
# Define a function for generating text
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=200)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create a Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs="text",
outputs="text",
title="Qwen 2.5 Coder 32B Text Generator",
description="Enter a prompt to generate text using the Qwen2.5-Coder-32B-Instruct-abliterated-GGUF model."
)
# Launch the interface
if __name__ == "__main__":
interface.launch()