from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("AiCloser/Qwen2.5-32B-AGI") model = AutoModelForCausalLM.from_pretrained( "AiCloser/Qwen2.5-32B-AGI", device_map="auto", torch_dtype="auto", resume_download=True # Allow resumable downloads ) # Define text generation function def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=200) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio interface interface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Qwen 2.5-32B Text Generator", description="Generate text using the Qwen2.5-32B-AGI model. Enter a prompt below." ) # Launch interface if __name__ == "__main__": interface.launch()