Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Copy of assessment3_Elina_Hemink.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1xhBZL_ztniX37QTt8SK_mV7nZKO_UrwW
|
8 |
+
|
9 |
+
## Create embeddings of the email dataset and store in a chromadb database
|
10 |
+
"""
|
11 |
+
|
12 |
+
!pip install chromadb
|
13 |
+
import chromadb
|
14 |
+
from chromadb.utils import embedding_functions
|
15 |
+
import pandas as pd
|
16 |
+
import email
|
17 |
+
from sklearn.model_selection import train_test_split
|
18 |
+
|
19 |
+
from google.colab import drive
|
20 |
+
drive.mount('/content/drive')
|
21 |
+
|
22 |
+
# Loading email.csv dataset
|
23 |
+
emails = pd.read_csv('/content/drive/MyDrive/emails.csv')
|
24 |
+
print(emails.head())
|
25 |
+
|
26 |
+
# What a message looks like
|
27 |
+
print(emails['message'][0])
|
28 |
+
|
29 |
+
# Getting the content of the emails and saving to a list
|
30 |
+
content_text = []
|
31 |
+
for item in emails.message:
|
32 |
+
text = email.message_from_string(item)
|
33 |
+
message = (text.get_payload())
|
34 |
+
cleaned_message = message.replace("\n","").replace("\r","").replace("> >>> > >","")
|
35 |
+
content_text.append(cleaned_message)
|
36 |
+
|
37 |
+
# Checking content of emails (first 5 items)
|
38 |
+
print(content_text[:5])
|
39 |
+
|
40 |
+
# Taking a sample of the dataset
|
41 |
+
train, test = train_test_split(content_text, train_size = 0.01) # Dataset is too large to complete embedding step
|
42 |
+
|
43 |
+
print(train[:5])
|
44 |
+
print(len(train))
|
45 |
+
|
46 |
+
# Setting up ids for ChromaDB collections
|
47 |
+
ids = []
|
48 |
+
for i in range(len(train)):
|
49 |
+
id = 'id'+str(i+1)
|
50 |
+
ids.append(id)
|
51 |
+
|
52 |
+
# Creating collection
|
53 |
+
client = chromadb.Client()
|
54 |
+
collection = client.create_collection(name="Enron_emails")
|
55 |
+
collection.add(
|
56 |
+
documents = train,
|
57 |
+
ids = ids
|
58 |
+
)
|
59 |
+
|
60 |
+
"""## Fine-tune a Language Model on the Dataset"""
|
61 |
+
|
62 |
+
!pip install transformers[torch] accelerate -U
|
63 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
64 |
+
|
65 |
+
# Load pre-trained GPT2 tokenizer and model
|
66 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
67 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
68 |
+
|
69 |
+
# Tokenize the dataset
|
70 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
71 |
+
tokenized_emails = tokenizer(train, truncation=True, padding=True)
|
72 |
+
|
73 |
+
# Extract token IDs from BatchEncoding object
|
74 |
+
token_ids_list = tokenized_emails['input_ids']
|
75 |
+
|
76 |
+
# Save token IDs to a text file
|
77 |
+
with open('tokenized_emails.txt', 'w') as f:
|
78 |
+
for token_ids in token_ids_list:
|
79 |
+
f.write(' '.join(map(str, token_ids)) + '\n')
|
80 |
+
|
81 |
+
# Initialize TextDataset with the file path
|
82 |
+
dataset = TextDataset(tokenizer=tokenizer, file_path = 'tokenized_emails.txt', block_size=128)
|
83 |
+
|
84 |
+
# Define data collator
|
85 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
86 |
+
|
87 |
+
# Define training arguments
|
88 |
+
training_args = TrainingArguments(
|
89 |
+
output_dir='./output',
|
90 |
+
num_train_epochs=3,
|
91 |
+
per_device_train_batch_size=8,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Initialize Trainer
|
95 |
+
trainer = Trainer(
|
96 |
+
model=model,
|
97 |
+
args=training_args,
|
98 |
+
data_collator=data_collator,
|
99 |
+
train_dataset=dataset,
|
100 |
+
)
|
101 |
+
|
102 |
+
# Fine-tune the model
|
103 |
+
trainer.train()
|
104 |
+
|
105 |
+
# Save the fine-tuned model
|
106 |
+
model.save_pretrained("/fine_tuned_model")
|
107 |
+
tokenizer.save_pretrained("/fine_tuned_model")
|
108 |
+
|
109 |
+
"""## Create a Gradio Interface"""
|
110 |
+
|
111 |
+
!pip install gradio
|
112 |
+
import gradio as gr
|
113 |
+
|
114 |
+
model_dir= "/fine_tuned_model"
|
115 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
|
116 |
+
model = GPT2LMHeadModel.from_pretrained(model_dir)
|
117 |
+
|
118 |
+
# Load chromadb collection to pass as context
|
119 |
+
documents = collection.get(["documents"])
|
120 |
+
|
121 |
+
# Define function to answer questions using the fine-tuned model and ChromaDB collection
|
122 |
+
def answer_question(question):
|
123 |
+
# Concatenate document contents to create context
|
124 |
+
context = " ".join(doc["content"] for doc in documents)
|
125 |
+
|
126 |
+
# Append question to the context
|
127 |
+
input_text = f"Question: {question} Context: {context} Answer:"
|
128 |
+
|
129 |
+
# Generate answer using the model
|
130 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
131 |
+
generated = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
132 |
+
answer = tokenizer.decode(generated[0], skip_special_tokens=True)
|
133 |
+
|
134 |
+
|
135 |
+
gr.Interface(fn=answer_question, inputs="text", outputs="text").launch()
|
136 |
+
|
137 |
+
"""## Deploy the Gradio Interface in a Huggingface Space"""
|
138 |
+
|