|
|
|
from concurrent import futures |
|
import argparse |
|
import signal |
|
import sys |
|
import os |
|
import time |
|
import base64 |
|
|
|
import grpc |
|
import backend_pb2 |
|
import backend_pb2_grpc |
|
|
|
from auto_gptq import AutoGPTQForCausalLM |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from transformers import TextGenerationPipeline |
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 |
|
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) |
|
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer): |
|
def Health(self, request, context): |
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) |
|
def LoadModel(self, request, context): |
|
try: |
|
device = "cuda:0" |
|
if request.Device != "": |
|
device = request.Device |
|
|
|
|
|
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode) |
|
|
|
|
|
if "qwen-vl" in request.Model.lower(): |
|
self.model_name = "Qwen-VL-Chat" |
|
model = AutoModelForCausalLM.from_pretrained(model_path, |
|
trust_remote_code=request.TrustRemoteCode, |
|
device_map="auto").eval() |
|
else: |
|
model = AutoGPTQForCausalLM.from_quantized(model_path, |
|
model_basename=request.ModelBaseName, |
|
use_safetensors=True, |
|
trust_remote_code=request.TrustRemoteCode, |
|
device=device, |
|
use_triton=request.UseTriton, |
|
quantize_config=None) |
|
|
|
self.model = model |
|
self.tokenizer = tokenizer |
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
return backend_pb2.Result(message="Model loaded successfully", success=True) |
|
|
|
def Predict(self, request, context): |
|
penalty = 1.0 |
|
if request.Penalty != 0.0: |
|
penalty = request.Penalty |
|
tokens = 512 |
|
if request.Tokens != 0: |
|
tokens = request.Tokens |
|
top_p = 0.95 |
|
if request.TopP != 0.0: |
|
top_p = request.TopP |
|
|
|
|
|
prompt_images = self.recompile_vl_prompt(request) |
|
compiled_prompt = prompt_images[0] |
|
print(f"Prompt: {compiled_prompt}", file=sys.stderr) |
|
|
|
|
|
pipeline = TextGenerationPipeline( |
|
model=self.model, |
|
tokenizer=self.tokenizer, |
|
max_new_tokens=tokens, |
|
temperature=request.Temperature, |
|
top_p=top_p, |
|
repetition_penalty=penalty, |
|
) |
|
t = pipeline(compiled_prompt)[0]["generated_text"] |
|
print(f"generated_text: {t}", file=sys.stderr) |
|
|
|
if compiled_prompt in t: |
|
t = t.replace(compiled_prompt, "") |
|
|
|
for img_path in prompt_images[1]: |
|
try: |
|
os.remove(img_path) |
|
except Exception as e: |
|
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr) |
|
|
|
return backend_pb2.Result(message=bytes(t, encoding='utf-8')) |
|
|
|
def PredictStream(self, request, context): |
|
|
|
|
|
|
|
|
|
return self.Predict(request, context) |
|
|
|
def recompile_vl_prompt(self, request): |
|
prompt = request.Prompt |
|
image_paths = [] |
|
|
|
if "qwen-vl" in self.model_name.lower(): |
|
|
|
|
|
|
|
for i, img in enumerate(request.Images): |
|
timestamp = str(int(time.time() * 1000)) |
|
img_path = f"/tmp/vl-{timestamp}.jpg" |
|
with open(img_path, "wb") as f: |
|
f.write(base64.b64decode(img)) |
|
image_paths.append(img_path) |
|
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,") |
|
else: |
|
prompt = request.Prompt |
|
return (prompt, image_paths) |
|
|
|
def serve(address): |
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) |
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) |
|
server.add_insecure_port(address) |
|
server.start() |
|
print("Server started. Listening on: " + address, file=sys.stderr) |
|
|
|
|
|
def signal_handler(sig, frame): |
|
print("Received termination signal. Shutting down...") |
|
server.stop(0) |
|
sys.exit(0) |
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
try: |
|
while True: |
|
time.sleep(_ONE_DAY_IN_SECONDS) |
|
except KeyboardInterrupt: |
|
server.stop(0) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the gRPC server.") |
|
parser.add_argument( |
|
"--addr", default="localhost:50051", help="The address to bind the server to." |
|
) |
|
args = parser.parse_args() |
|
|
|
serve(args.addr) |