|
|
|
""" |
|
Extra gRPC server for OpenVoice models. |
|
""" |
|
from concurrent import futures |
|
|
|
import argparse |
|
import signal |
|
import sys |
|
import os |
|
import torch |
|
from openvoice import se_extractor |
|
from openvoice.api import ToneColorConverter |
|
from melo.api import TTS |
|
|
|
import time |
|
import backend_pb2 |
|
import backend_pb2_grpc |
|
|
|
import grpc |
|
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 |
|
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) |
|
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer): |
|
""" |
|
A gRPC servicer for the backend service. |
|
|
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding. |
|
""" |
|
def Health(self, request, context): |
|
""" |
|
A gRPC method that returns the health status of the backend service. |
|
|
|
Args: |
|
request: A HealthRequest object that contains the request parameters. |
|
context: A grpc.ServicerContext object that provides information about the RPC. |
|
|
|
Returns: |
|
A Reply object that contains the health status of the backend service. |
|
""" |
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) |
|
|
|
def LoadModel(self, request, context): |
|
""" |
|
A gRPC method that loads a model into memory. |
|
|
|
Args: |
|
request: A LoadModelRequest object that contains the request parameters. |
|
context: A grpc.ServicerContext object that provides information about the RPC. |
|
|
|
Returns: |
|
A Result object that contains the result of the LoadModel operation. |
|
""" |
|
model_name = request.Model |
|
try: |
|
|
|
self.clonedVoice = False |
|
|
|
|
|
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath): |
|
|
|
modelFileBase = os.path.dirname(request.ModelFile) |
|
request.AudioPath = os.path.join(modelFileBase, request.AudioPath) |
|
if request.AudioPath != "": |
|
self.clonedVoice = True |
|
|
|
self.modelpath = request.ModelFile |
|
self.speaker = request.Type |
|
self.ClonedVoicePath = request.AudioPath |
|
|
|
ckpt_converter = request.Model+'/converter' |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
self.device = device |
|
self.tone_color_converter = None |
|
if self.clonedVoice: |
|
self.tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device) |
|
self.tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth') |
|
|
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True) |
|
|
|
def TTS(self, request, context): |
|
model_name = request.model |
|
if model_name == "": |
|
return backend_pb2.Result(success=False, message="request.model is required") |
|
try: |
|
|
|
speed = 1.0 |
|
voice = "EN" |
|
if request.voice: |
|
voice = request.voice |
|
model = TTS(language=voice, device=self.device) |
|
speaker_ids = model.hps.data.spk2id |
|
speaker_key = self.speaker |
|
modelpath = self.modelpath |
|
for s in speaker_ids.keys(): |
|
print(f"Speaker: {s} - ID: {speaker_ids[s]}") |
|
speaker_id = speaker_ids[speaker_key] |
|
speaker_key = speaker_key.lower().replace('_', '-') |
|
source_se = torch.load(f'{modelpath}/base_speakers/ses/{speaker_key}.pth', map_location=self.device) |
|
model.tts_to_file(request.text, speaker_id, request.dst, speed=speed) |
|
if self.clonedVoice: |
|
reference_speaker = self.ClonedVoicePath |
|
target_se, audio_name = se_extractor.get_se(reference_speaker, self.tone_color_converter, vad=False) |
|
|
|
encode_message = "@MyShell" |
|
self.tone_color_converter.convert( |
|
audio_src_path=request.dst, |
|
src_se=source_se, |
|
tgt_se=target_se, |
|
output_path=request.dst, |
|
message=encode_message) |
|
|
|
print("[OpenVoice] TTS generated!", file=sys.stderr) |
|
print("[OpenVoice] TTS saved to", request.dst, file=sys.stderr) |
|
print(request, file=sys.stderr) |
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
return backend_pb2.Result(success=True) |
|
|
|
def serve(address): |
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) |
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) |
|
server.add_insecure_port(address) |
|
server.start() |
|
print("[OpenVoice] Server started. Listening on: " + address, file=sys.stderr) |
|
|
|
|
|
def signal_handler(sig, frame): |
|
print("[OpenVoice] Received termination signal. Shutting down...") |
|
server.stop(0) |
|
sys.exit(0) |
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
try: |
|
while True: |
|
time.sleep(_ONE_DAY_IN_SECONDS) |
|
except KeyboardInterrupt: |
|
server.stop(0) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the gRPC server.") |
|
parser.add_argument( |
|
"--addr", default="localhost:50051", help="The address to bind the server to." |
|
) |
|
args = parser.parse_args() |
|
print(f"[OpenVoice] startup: {args}", file=sys.stderr) |
|
serve(args.addr) |
|
|