|
|
|
import asyncio |
|
from concurrent import futures |
|
import argparse |
|
import signal |
|
import sys |
|
import os |
|
|
|
import backend_pb2 |
|
import backend_pb2_grpc |
|
|
|
import grpc |
|
from vllm.engine.arg_utils import AsyncEngineArgs |
|
from vllm.engine.async_llm_engine import AsyncLLMEngine |
|
from vllm.sampling_params import SamplingParams |
|
from vllm.utils import random_uuid |
|
from vllm.transformers_utils.tokenizer import get_tokenizer |
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 |
|
|
|
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) |
|
|
|
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer): |
|
""" |
|
A gRPC servicer that implements the Backend service defined in backend.proto. |
|
""" |
|
def generate(self,prompt, max_new_tokens): |
|
""" |
|
Generates text based on the given prompt and maximum number of new tokens. |
|
|
|
Args: |
|
prompt (str): The prompt to generate text from. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
|
|
Returns: |
|
str: The generated text. |
|
""" |
|
self.generator.end_beam_search() |
|
|
|
|
|
ids = self.generator.tokenizer.encode(prompt) |
|
|
|
self.generator.gen_begin_reuse(ids) |
|
initial_len = self.generator.sequence[0].shape[0] |
|
has_leading_space = False |
|
decoded_text = '' |
|
for i in range(max_new_tokens): |
|
token = self.generator.gen_single_token() |
|
if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): |
|
has_leading_space = True |
|
|
|
decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:]) |
|
if has_leading_space: |
|
decoded_text = ' ' + decoded_text |
|
|
|
if token.item() == self.generator.tokenizer.eos_token_id: |
|
break |
|
return decoded_text |
|
|
|
def Health(self, request, context): |
|
""" |
|
Returns a health check message. |
|
|
|
Args: |
|
request: The health check request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Reply: The health check reply. |
|
""" |
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) |
|
|
|
async def LoadModel(self, request, context): |
|
""" |
|
Loads a language model. |
|
|
|
Args: |
|
request: The load model request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Result: The load model result. |
|
""" |
|
engine_args = AsyncEngineArgs( |
|
model=request.Model, |
|
) |
|
|
|
if request.Quantization != "": |
|
engine_args.quantization = request.Quantization |
|
if request.GPUMemoryUtilization != 0: |
|
engine_args.gpu_memory_utilization = request.GPUMemoryUtilization |
|
if request.TrustRemoteCode: |
|
engine_args.trust_remote_code = request.TrustRemoteCode |
|
if request.EnforceEager: |
|
engine_args.enforce_eager = request.EnforceEager |
|
if request.TensorParallelSize: |
|
engine_args.tensor_parallel_size = request.TensorParallelSize |
|
if request.SwapSpace != 0: |
|
engine_args.swap_space = request.SwapSpace |
|
if request.MaxModelLen != 0: |
|
engine_args.max_model_len = request.MaxModelLen |
|
|
|
try: |
|
self.llm = AsyncLLMEngine.from_engine_args(engine_args) |
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
|
|
try: |
|
engine_model_config = await self.llm.get_model_config() |
|
self.tokenizer = get_tokenizer( |
|
engine_model_config.tokenizer, |
|
tokenizer_mode=engine_model_config.tokenizer_mode, |
|
trust_remote_code=engine_model_config.trust_remote_code, |
|
truncation_side="left", |
|
) |
|
except Exception as err: |
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") |
|
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True) |
|
|
|
async def Predict(self, request, context): |
|
""" |
|
Generates text based on the given prompt and sampling parameters. |
|
|
|
Args: |
|
request: The predict request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Reply: The predict result. |
|
""" |
|
gen = self._predict(request, context, streaming=False) |
|
res = await gen.__anext__() |
|
return res |
|
|
|
async def PredictStream(self, request, context): |
|
""" |
|
Generates text based on the given prompt and sampling parameters, and streams the results. |
|
|
|
Args: |
|
request: The predict stream request. |
|
context: The gRPC context. |
|
|
|
Returns: |
|
backend_pb2.Result: The predict stream result. |
|
""" |
|
iterations = self._predict(request, context, streaming=True) |
|
try: |
|
async for iteration in iterations: |
|
yield iteration |
|
finally: |
|
await iterations.aclose() |
|
|
|
async def _predict(self, request, context, streaming=False): |
|
|
|
|
|
sampling_params = SamplingParams(top_p=0.9, max_tokens=200) |
|
if request.TopP != 0: |
|
sampling_params.top_p = request.TopP |
|
if request.Tokens > 0: |
|
sampling_params.max_tokens = request.Tokens |
|
if request.Temperature != 0: |
|
sampling_params.temperature = request.Temperature |
|
if request.TopK != 0: |
|
sampling_params.top_k = request.TopK |
|
if request.PresencePenalty != 0: |
|
sampling_params.presence_penalty = request.PresencePenalty |
|
if request.FrequencyPenalty != 0: |
|
sampling_params.frequency_penalty = request.FrequencyPenalty |
|
if request.StopPrompts: |
|
sampling_params.stop = request.StopPrompts |
|
if request.IgnoreEOS: |
|
sampling_params.ignore_eos = request.IgnoreEOS |
|
if request.Seed != 0: |
|
sampling_params.seed = request.Seed |
|
|
|
prompt = request.Prompt |
|
|
|
|
|
if not request.Prompt and request.UseTokenizerTemplate and request.Messages: |
|
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True) |
|
|
|
|
|
request_id = random_uuid() |
|
outputs = self.llm.generate(prompt, sampling_params, request_id) |
|
|
|
|
|
generated_text = "" |
|
try: |
|
async for request_output in outputs: |
|
iteration_text = request_output.outputs[0].text |
|
|
|
if streaming: |
|
|
|
delta_iteration_text = iteration_text.removeprefix(generated_text) |
|
|
|
yield backend_pb2.Reply(message=bytes(delta_iteration_text, encoding='utf-8')) |
|
|
|
|
|
generated_text = iteration_text |
|
finally: |
|
await outputs.aclose() |
|
|
|
|
|
if streaming: |
|
return |
|
|
|
|
|
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8')) |
|
|
|
async def serve(address): |
|
|
|
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) |
|
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) |
|
|
|
server.add_insecure_port(address) |
|
|
|
|
|
loop = asyncio.get_event_loop() |
|
for sig in (signal.SIGINT, signal.SIGTERM): |
|
loop.add_signal_handler( |
|
sig, lambda: asyncio.ensure_future(server.stop(5)) |
|
) |
|
|
|
|
|
await server.start() |
|
print("Server started. Listening on: " + address, file=sys.stderr) |
|
|
|
await server.wait_for_termination() |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run the gRPC server.") |
|
parser.add_argument( |
|
"--addr", default="localhost:50051", help="The address to bind the server to." |
|
) |
|
args = parser.parse_args() |
|
|
|
asyncio.run(serve(args.addr)) |