|
import os |
|
|
|
|
|
|
|
|
|
from llama_index import LLMPredictor, PromptHelper, ServiceContext |
|
from langchain.llms.openai import OpenAI |
|
from llama_index import StorageContext, load_index_from_storage |
|
|
|
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') |
|
|
|
|
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)) |
|
|
|
|
|
max_input_size = 500 |
|
num_output = 256 |
|
max_chunk_overlap = 0.2 |
|
|
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) |
|
|
|
|
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) |
|
|
|
|
|
storage_context = StorageContext.from_defaults(persist_dir='./storage') |
|
|
|
|
|
index = load_index_from_storage(storage_context, service_context=service_context, ) |
|
|
|
query_engine = index.as_query_engine() |
|
|
|
data = input("Question: ") |
|
response = query_engine.query(data) |
|
print(response) |
|
|