edyrkaj's picture
Create app.py
c16d8e2 verified
raw
history blame
680 Bytes
from transformers.utils import logging
logging.set_verbosity_error()
import warnings
warnings.filterwarnings("ignore",
message="Using the model-agnostic default `max_length`")
import os
import gradio as gr
from transformers import pipeline
pipe = pipeline("image-to-text",
model="Salesforce/blip-image-captioning-base")
def launch(input):
out = pipe(input)
return out[0]['generated_text']
iface = gr.Interface(launch,
inputs=gr.Image(type='pil'),
outputs="text")
iface.launch(share=True)
# iface.launch(share=True,
# server_port=int(os.environ['PORT1']))
iface.close()