Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from scipy.special import softmax
|
6 |
+
|
7 |
+
|
8 |
+
# Add description and title
|
9 |
+
st.write("""
|
10 |
+
# Sentiment Analysis App
|
11 |
+
""")
|
12 |
+
|
13 |
+
|
14 |
+
# Add image
|
15 |
+
image = st.image("images.png", width=200)
|
16 |
+
|
17 |
+
|
18 |
+
# Get user input
|
19 |
+
text = st.text_input("Type here:")
|
20 |
+
button = st.button('Analyze')
|
21 |
+
|
22 |
+
# Define the CSS style for the app
|
23 |
+
st.markdown(
|
24 |
+
"""
|
25 |
+
<style>
|
26 |
+
body {
|
27 |
+
background-color: #f5f5f5;
|
28 |
+
}
|
29 |
+
h1 {
|
30 |
+
color: #4e79a7;
|
31 |
+
}
|
32 |
+
</style>
|
33 |
+
""",
|
34 |
+
unsafe_allow_html=True
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def preprocess(text):
|
39 |
+
new_text = []
|
40 |
+
for t in text.split(" "):
|
41 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
42 |
+
t = 'http' if t.startswith('http') else t
|
43 |
+
new_text.append(t)
|
44 |
+
return " ".join(new_text)
|
45 |
+
|
46 |
+
@st.cache_resource()
|
47 |
+
def get_model():
|
48 |
+
# Load the model and tokenizer
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
50 |
+
model = AutoModelForSequenceClassification.from_pretrained("MrDdz/bert-base-uncased")
|
51 |
+
return tokenizer,model
|
52 |
+
tokenizer, model = get_model()
|
53 |
+
|
54 |
+
if button:
|
55 |
+
text_sample = tokenizer(text, padding = 'max_length',return_tensors = 'pt')
|
56 |
+
# print(text_sample)
|
57 |
+
output = model(**text_sample)
|
58 |
+
scores_ = output[0][0].detach().numpy()
|
59 |
+
scores_ = softmax(scores_)
|
60 |
+
|
61 |
+
labels = ['Negative','Neutral','Positive']
|
62 |
+
scores = {l:float(s) for (l,s) in zip(labels,scores_)}
|
63 |
+
st.write("Prediction :",scores)
|