elang197 commited on
Commit
3e73f96
·
verified ·
1 Parent(s): e341994

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -13
app.py CHANGED
@@ -5,23 +5,15 @@ from keras.models import load_model
5
  from sklearn.preprocessing import LabelEncoder
6
  import pickle
7
 
8
- # Lade das trainierte Modell und den LabelEncoder
9
- model = load_model('/Users/erwinlang/PycharmProjects/DogID/dog_breed_classifier.h5')
10
- with open('/Users/erwinlang/PycharmProjects/DogID/label_encoder.pkl', 'rb') as f:
11
  label_encoder = pickle.load(f)
12
 
13
 
14
  def predict_breed(image, model, label_encoder):
15
- """
16
- Vorhersage der Hunderasse basierend auf dem Bild.
17
-
18
- :param image: Das Bild des Hundes als numpy Array
19
- :param model: Das geladene Keras Modell
20
- :param label_encoder: Der LabelEncoder für die Hunderassen
21
- :return: Die vorhergesagte Hunderasse
22
- """
23
- image = image.resize((128, 128)) # Ändere die Bildgröße entsprechend der Modellanforderungen
24
- image = np.expand_dims(np.array(image), axis=0) # Füge Batch-Dimension hinzu
25
  predictions = model.predict(image)
26
  predicted_breed = label_encoder.inverse_transform([np.argmax(predictions)])
27
  return predicted_breed[0]
 
5
  from sklearn.preprocessing import LabelEncoder
6
  import pickle
7
 
8
+ # das trainierte Modell und den LabelEncoder laden
9
+ model = load_model('dog_breed_classifier.h5')
10
+ with open('label_encoder.pkl', 'rb') as f:
11
  label_encoder = pickle.load(f)
12
 
13
 
14
  def predict_breed(image, model, label_encoder):
15
+ image = image.resize((128, 128))
16
+ image = np.expand_dims(np.array(image), axis=0)
 
 
 
 
 
 
 
 
17
  predictions = model.predict(image)
18
  predicted_breed = label_encoder.inverse_transform([np.argmax(predictions)])
19
  return predicted_breed[0]