File size: 59,489 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
from abc import ABC, abstractmethod
from typing import Any, List, Dict, Optional, Union
from concurrent.futures import ThreadPoolExecutor, as_completed
import json, time
# from optimum.intel import IPEXModel
from .prompts import *
from .config import *
from .utils import *
from .models import *
from functools import partial
from .model_loader import *
import math
import numpy as np
import re
from bs4 import BeautifulSoup
from lxml import html, etree
from dataclasses import dataclass

class ExtractionStrategy(ABC):
    """
    Abstract base class for all extraction strategies.
    """
    
    def __init__(self, input_format: str = "markdown", **kwargs):
        """
        Initialize the extraction strategy.

        Args:
            input_format: Content format to use for extraction.
                         Options: "markdown" (default), "html", "fit_markdown"
            **kwargs: Additional keyword arguments
        """
        self.input_format = input_format
        self.DEL = "<|DEL|>"
        self.name = self.__class__.__name__
        self.verbose = kwargs.get("verbose", False)

    @abstractmethod
    def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Extract meaningful blocks or chunks from the given HTML.

        :param url: The URL of the webpage.
        :param html: The HTML content of the webpage.
        :return: A list of extracted blocks or chunks.
        """
        pass
    
    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Process sections of text in parallel by default.

        :param url: The URL of the webpage.
        :param sections: List of sections (strings) to process.
        :return: A list of processed JSON blocks.
        """
        extracted_content = []
        with ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.extract, url, section, **kwargs) for section in sections]
            for future in as_completed(futures):
                extracted_content.extend(future.result())
        return extracted_content    
    
class NoExtractionStrategy(ExtractionStrategy):
    """
    A strategy that does not extract any meaningful content from the HTML. It simply returns the entire HTML as a single block.
    """
    def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Extract meaningful blocks or chunks from the given HTML.
        """
        return [{"index": 0, "content": html}]
    
    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        return [{"index": i, "tags": [], "content": section} for i, section in enumerate(sections)]

#######################################################
# Strategies using LLM-based extraction for text data #
#######################################################
class LLMExtractionStrategy(ExtractionStrategy):
    """
    A strategy that uses an LLM to extract meaningful content from the HTML.
    
    Attributes:
        provider: The provider to use for extraction. It follows the format <provider_name>/<model_name>, e.g., "ollama/llama3.3".
        api_token: The API token for the provider.
        instruction: The instruction to use for the LLM model.  
        schema: Pydantic model schema for structured data.
        extraction_type: "block" or "schema".
        chunk_token_threshold: Maximum tokens per chunk.
        overlap_rate: Overlap between chunks.
        word_token_rate: Word to token conversion rate.
        apply_chunking: Whether to apply chunking.
        base_url: The base URL for the API request.
        api_base: The base URL for the API request.
        extra_args: Additional arguments for the API request, such as temprature, max_tokens, etc.
        verbose: Whether to print verbose output.
        usages: List of individual token usages.
        total_usage: Accumulated token usage.
    """

    def __init__(self, 
                 provider: str = DEFAULT_PROVIDER, api_token: Optional[str] = None, 
                 instruction:str = None, schema:Dict = None, extraction_type = "block", **kwargs):
        """
        Initialize the strategy with clustering parameters.
        
        Args:
            provider: The provider to use for extraction. It follows the format <provider_name>/<model_name>, e.g., "ollama/llama3.3".
            api_token: The API token for the provider.
            instruction: The instruction to use for the LLM model.  
            schema: Pydantic model schema for structured data.
            extraction_type: "block" or "schema".
            chunk_token_threshold: Maximum tokens per chunk.
            overlap_rate: Overlap between chunks.
            word_token_rate: Word to token conversion rate.
            apply_chunking: Whether to apply chunking.
            base_url: The base URL for the API request.
            api_base: The base URL for the API request.
            extra_args: Additional arguments for the API request, such as temprature, max_tokens, etc.
            verbose: Whether to print verbose output.
            usages: List of individual token usages.
            total_usage: Accumulated token usage.   

        """
        super().__init__(**kwargs)
        self.provider = provider
        self.api_token = api_token or PROVIDER_MODELS.get(provider, "no-token") or os.getenv("OPENAI_API_KEY")
        self.instruction = instruction
        self.extract_type = extraction_type
        self.schema = schema
        if schema:
            self.extract_type = "schema"
        
        self.chunk_token_threshold = kwargs.get("chunk_token_threshold", CHUNK_TOKEN_THRESHOLD)
        self.overlap_rate = kwargs.get("overlap_rate", OVERLAP_RATE)
        self.word_token_rate = kwargs.get("word_token_rate", WORD_TOKEN_RATE)
        self.apply_chunking = kwargs.get("apply_chunking", True)
        self.base_url = kwargs.get("base_url", None)
        self.api_base = kwargs.get("api_base", kwargs.get("base_url", None))
        self.extra_args = kwargs.get("extra_args", {})
        if not self.apply_chunking:
            self.chunk_token_threshold = 1e9
        
        self.verbose = kwargs.get("verbose", False)
        self.usages = []  # Store individual usages
        self.total_usage = TokenUsage()  # Accumulated usage        
        
        if not self.api_token:
            raise ValueError("API token must be provided for LLMExtractionStrategy. Update the config.py or set OPENAI_API_KEY environment variable.")
        
            
    def extract(self, url: str, ix:int, html: str) -> List[Dict[str, Any]]:
        """
        Extract meaningful blocks or chunks from the given HTML using an LLM.
        
        How it works:
        1. Construct a prompt with variables.
        2. Make a request to the LLM using the prompt.
        3. Parse the response and extract blocks or chunks.
        
        Args:
            url: The URL of the webpage.
            ix: Index of the block.
            html: The HTML content of the webpage.
            
        Returns:
            A list of extracted blocks or chunks.
        """
        if self.verbose:
            # print("[LOG] Extracting blocks from URL:", url)
            print(f"[LOG] Call LLM for {url} - block index: {ix}")

        variable_values = {
            "URL": url,
            "HTML": escape_json_string(sanitize_html(html)),
        }
        
        prompt_with_variables = PROMPT_EXTRACT_BLOCKS
        if self.instruction:
            variable_values["REQUEST"] = self.instruction
            prompt_with_variables = PROMPT_EXTRACT_BLOCKS_WITH_INSTRUCTION
            
        if self.extract_type == "schema" and self.schema:
            variable_values["SCHEMA"] = json.dumps(self.schema, indent=2)
            prompt_with_variables = PROMPT_EXTRACT_SCHEMA_WITH_INSTRUCTION

        for variable in variable_values:
            prompt_with_variables = prompt_with_variables.replace(
                "{" + variable + "}", variable_values[variable]
            )
        
        response = perform_completion_with_backoff(
            self.provider, 
            prompt_with_variables, 
            self.api_token, 
            base_url=self.api_base or self.base_url,
            extra_args = self.extra_args
            ) # , json_response=self.extract_type == "schema")
        # Track usage
        usage = TokenUsage(
            completion_tokens=response.usage.completion_tokens,
            prompt_tokens=response.usage.prompt_tokens,
            total_tokens=response.usage.total_tokens,
            completion_tokens_details=response.usage.completion_tokens_details.__dict__ if response.usage.completion_tokens_details else {},
            prompt_tokens_details=response.usage.prompt_tokens_details.__dict__ if response.usage.prompt_tokens_details else {}
        )
        self.usages.append(usage)
        
        # Update totals
        self.total_usage.completion_tokens += usage.completion_tokens
        self.total_usage.prompt_tokens += usage.prompt_tokens 
        self.total_usage.total_tokens += usage.total_tokens
        
        try:
            blocks = extract_xml_data(["blocks"], response.choices[0].message.content)['blocks']
            blocks = json.loads(blocks)
            for block in blocks:
                block['error'] = False
        except Exception as e:
            parsed, unparsed = split_and_parse_json_objects(response.choices[0].message.content)
            blocks = parsed
            if unparsed:
                blocks.append({
                    "index": 0,
                    "error": True,
                    "tags": ["error"],
                    "content": unparsed
                })
        
        if self.verbose:
            print("[LOG] Extracted", len(blocks), "blocks from URL:", url, "block index:", ix)
        return blocks
    
    def _merge(self, documents, chunk_token_threshold, overlap):
        """
        Merge documents into sections based on chunk_token_threshold and overlap.
        """
        chunks = []
        sections = []
        total_tokens = 0

        # Calculate the total tokens across all documents
        for document in documents:
            total_tokens += len(document.split(' ')) * self.word_token_rate

        # Calculate the number of sections needed
        num_sections = math.floor(total_tokens / chunk_token_threshold)
        if num_sections < 1:
            num_sections = 1  # Ensure there is at least one section
        adjusted_chunk_threshold = total_tokens / num_sections

        total_token_so_far = 0
        current_chunk = []

        for document in documents:
            tokens = document.split(' ')
            token_count = len(tokens) * self.word_token_rate
            
            if total_token_so_far + token_count <= adjusted_chunk_threshold:
                current_chunk.extend(tokens)
                total_token_so_far += token_count
            else:
                # Ensure to handle the last section properly
                if len(sections) == num_sections - 1:
                    current_chunk.extend(tokens)
                    continue
                
                # Add overlap if specified
                if overlap > 0 and current_chunk:
                    overlap_tokens = current_chunk[-overlap:]
                    current_chunk.extend(overlap_tokens)
                
                sections.append(' '.join(current_chunk))
                current_chunk = tokens
                total_token_so_far = token_count

        # Add the last chunk
        if current_chunk:
            sections.append(' '.join(current_chunk))

        return sections


    def run(self, url: str, sections: List[str]) -> List[Dict[str, Any]]:
        """
        Process sections sequentially with a delay for rate limiting issues, specifically for LLMExtractionStrategy.
        
        Args:
            url: The URL of the webpage.
            sections: List of sections (strings) to process.
            
        Returns:
            A list of extracted blocks or chunks.
        """
        
        merged_sections = self._merge(
            sections, self.chunk_token_threshold,
            overlap= int(self.chunk_token_threshold * self.overlap_rate)
        )
        extracted_content = []
        if self.provider.startswith("groq/"):
            # Sequential processing with a delay
            for ix, section in enumerate(merged_sections):
                extract_func = partial(self.extract, url)
                extracted_content.extend(extract_func(ix, sanitize_input_encode(section)))
                time.sleep(0.5)  # 500 ms delay between each processing
        else:
            # Parallel processing using ThreadPoolExecutor
            # extract_func = partial(self.extract, url)
            # for ix, section in enumerate(merged_sections):
            #     extracted_content.append(extract_func(ix, section))            
            
            with ThreadPoolExecutor(max_workers=4) as executor:
                extract_func = partial(self.extract, url)
                futures = [executor.submit(extract_func, ix, sanitize_input_encode(section)) for ix, section in enumerate(merged_sections)]
                
                for future in as_completed(futures):
                    try:
                        extracted_content.extend(future.result())
                    except Exception as e:
                        if self.verbose:
                            print(f"Error in thread execution: {e}")
                        # Add error information to extracted_content
                        extracted_content.append({
                            "index": 0,
                            "error": True,
                            "tags": ["error"],
                            "content": str(e)
                        })

        
        return extracted_content        
    
    
    def show_usage(self) -> None:
        """Print a detailed token usage report showing total and per-request usage."""
        print("\n=== Token Usage Summary ===")
        print(f"{'Type':<15} {'Count':>12}")
        print("-" * 30)
        print(f"{'Completion':<15} {self.total_usage.completion_tokens:>12,}")
        print(f"{'Prompt':<15} {self.total_usage.prompt_tokens:>12,}")
        print(f"{'Total':<15} {self.total_usage.total_tokens:>12,}")

        print("\n=== Usage History ===")
        print(f"{'Request #':<10} {'Completion':>12} {'Prompt':>12} {'Total':>12}")
        print("-" * 48)
        for i, usage in enumerate(self.usages, 1):
            print(f"{i:<10} {usage.completion_tokens:>12,} {usage.prompt_tokens:>12,} {usage.total_tokens:>12,}")
  
#######################################################
# Strategies using clustering for text data extraction #
#######################################################

class CosineStrategy(ExtractionStrategy):
    """
    Extract meaningful blocks or chunks from the given HTML using cosine similarity.
    
    How it works:
    1. Pre-filter documents using embeddings and semantic_filter.
    2. Perform clustering using cosine similarity.
    3. Organize texts by their cluster labels, retaining order.
    4. Filter clusters by word count.
    5. Extract meaningful blocks or chunks from the filtered clusters.
    
    Attributes:
        semantic_filter (str): A keyword filter for document filtering.
        word_count_threshold (int): Minimum number of words per cluster.
        max_dist (float): The maximum cophenetic distance on the dendrogram to form clusters.
        linkage_method (str): The linkage method for hierarchical clustering.
        top_k (int): Number of top categories to extract.
        model_name (str): The name of the sentence-transformers model.
        sim_threshold (float): The similarity threshold for clustering.
    """ 
    def __init__(self, semantic_filter = None, word_count_threshold=10, max_dist=0.2, linkage_method='ward', top_k=3, model_name = 'sentence-transformers/all-MiniLM-L6-v2', sim_threshold = 0.3, **kwargs):
        """
        Initialize the strategy with clustering parameters.

        Args:
            semantic_filter (str): A keyword filter for document filtering.
            word_count_threshold (int): Minimum number of words per cluster.
            max_dist (float): The maximum cophenetic distance on the dendrogram to form clusters.
            linkage_method (str): The linkage method for hierarchical clustering.
            top_k (int): Number of top categories to extract.
        """
        super().__init__(**kwargs)
        
        import numpy as np
        
        self.semantic_filter = semantic_filter
        self.word_count_threshold = word_count_threshold
        self.max_dist = max_dist
        self.linkage_method = linkage_method
        self.top_k = top_k
        self.sim_threshold = sim_threshold
        self.timer = time.time()
        self.verbose = kwargs.get("verbose", False)
        
        self.buffer_embeddings = np.array([])
        self.get_embedding_method = "direct"
        
        self.device = get_device()
        # import torch
        # self.device = torch.device('cpu')
        
        self.default_batch_size = calculate_batch_size(self.device)

        if self.verbose:
            print(f"[LOG] Loading Extraction Model for {self.device.type} device.")

        # if False and self.device.type == "cpu":
        #     self.model = load_onnx_all_MiniLM_l6_v2()
        #     self.tokenizer = self.model.tokenizer
        #     self.get_embedding_method = "direct"
        # else:

        self.tokenizer, self.model = load_HF_embedding_model(model_name)
        self.model.to(self.device)
        self.model.eval()  
        
        self.get_embedding_method = "batch"
        
        self.buffer_embeddings = np.array([])

        # if model_name == "bert-base-uncased":
        #     self.tokenizer, self.model = load_bert_base_uncased()
        #     self.model.eval()  # Ensure the model is in evaluation mode
        #     self.get_embedding_method = "batch"
        # elif model_name == "BAAI/bge-small-en-v1.5":
        #     self.tokenizer, self.model = load_bge_small_en_v1_5()
        #     self.model.eval()  # Ensure the model is in evaluation mode
        #     self.get_embedding_method = "batch"
        # elif model_name == "sentence-transformers/all-MiniLM-L6-v2":
        #     self.model = load_onnx_all_MiniLM_l6_v2()
        #     self.tokenizer = self.model.tokenizer
        #     self.get_embedding_method = "direct"
       
        
        if self.verbose:
            print(f"[LOG] Loading Multilabel Classifier for {self.device.type} device.")
            
        self.nlp, _ = load_text_multilabel_classifier()
        # self.default_batch_size = 16 if self.device.type == 'cpu' else 64
        
        if self.verbose:
            print(f"[LOG] Model loaded {model_name}, models/reuters, took " + str(time.time() - self.timer) + " seconds")

    def filter_documents_embeddings(self, documents: List[str], semantic_filter: str, at_least_k: int = 20) -> List[str]:
        """
        Filter and sort documents based on the cosine similarity of their embeddings with the semantic_filter embedding.

        Args:
            documents (List[str]): A list of document texts.
            semantic_filter (str): A keyword filter for document filtering.
            at_least_k (int): The minimum number of documents to return.

        Returns:
            List[str]: A list of filtered and sorted document texts.
        """
        
        if not semantic_filter:
            return documents
        
        if len(documents) < at_least_k:
            at_least_k = len(documents) // 2
        
        from sklearn.metrics.pairwise import cosine_similarity
        
        # Compute embedding for the keyword filter
        query_embedding = self.get_embeddings([semantic_filter])[0]
        
        # Compute embeddings for the documents
        document_embeddings = self.get_embeddings(documents)
        
        # Calculate cosine similarity between the query embedding and document embeddings
        similarities = cosine_similarity([query_embedding], document_embeddings).flatten()
        
        # Filter documents based on the similarity threshold
        filtered_docs = [(doc, sim) for doc, sim in zip(documents, similarities) if sim >= self.sim_threshold]
        
        # If the number of filtered documents is less than at_least_k, sort remaining documents by similarity
        if len(filtered_docs) < at_least_k:
            remaining_docs = [(doc, sim) for doc, sim in zip(documents, similarities) if sim < self.sim_threshold]
            remaining_docs.sort(key=lambda x: x[1], reverse=True)
            filtered_docs.extend(remaining_docs[:at_least_k - len(filtered_docs)])
        
        # Extract the document texts from the tuples
        filtered_docs = [doc for doc, _ in filtered_docs]
        
        return filtered_docs[:at_least_k]
    
    def get_embeddings(self, sentences: List[str], batch_size=None, bypass_buffer=False):
        """
        Get BERT embeddings for a list of sentences.

        Args:
            sentences (List[str]): A list of text chunks (sentences).

        Returns:
            NumPy array of embeddings.
        """
        # if self.buffer_embeddings.any() and not bypass_buffer:
        #     return self.buffer_embeddings
        
        if self.device.type in [ "cpu", "gpu", "cuda", "mps"]:
            import torch 
            # Tokenize sentences and convert to tensor
            if batch_size is None:
                batch_size = self.default_batch_size
                        
            all_embeddings = []
            for i in range(0, len(sentences), batch_size):
                batch_sentences = sentences[i:i + batch_size]
                encoded_input = self.tokenizer(batch_sentences, padding=True, truncation=True, return_tensors='pt')
                encoded_input = {key: tensor.to(self.device) for key, tensor in encoded_input.items()}
                
                # Ensure no gradients are calculated
                with torch.no_grad():
                    model_output = self.model(**encoded_input)
                
                # Get embeddings from the last hidden state (mean pooling)
                embeddings = model_output.last_hidden_state.mean(dim=1).cpu().numpy()
                all_embeddings.append(embeddings)
            
            self.buffer_embeddings = np.vstack(all_embeddings)
        elif self.device.type == "cpu":      
            # self.buffer_embeddings = self.model(sentences)
            if batch_size is None:
                batch_size = self.default_batch_size
                
            all_embeddings = []
            for i in range(0, len(sentences), batch_size):
                batch_sentences = sentences[i:i + batch_size]
                embeddings = self.model(batch_sentences)
                all_embeddings.append(embeddings)
                
            self.buffer_embeddings = np.vstack(all_embeddings)
        return self.buffer_embeddings

    def hierarchical_clustering(self, sentences: List[str], embeddings = None):
        """
        Perform hierarchical clustering on sentences and return cluster labels.

        Args:
            sentences (List[str]): A list of text chunks (sentences).

        Returns:
            NumPy array of cluster labels.
        """
        # Get embeddings
        from scipy.cluster.hierarchy import linkage, fcluster
        from scipy.spatial.distance import pdist
        self.timer = time.time()
        embeddings = self.get_embeddings(sentences, bypass_buffer=True)
        # print(f"[LOG] 🚀 Embeddings computed in {time.time() - self.timer:.2f} seconds")
        # Compute pairwise cosine distances
        distance_matrix = pdist(embeddings, 'cosine')
        # Perform agglomerative clustering respecting order
        linked = linkage(distance_matrix, method=self.linkage_method)
        # Form flat clusters
        labels = fcluster(linked, self.max_dist, criterion='distance')
        return labels

    def filter_clusters_by_word_count(self, clusters: Dict[int, List[str]]) -> Dict[int, List[str]]:
        """
        Filter clusters to remove those with a word count below the threshold.

        Args:
            clusters (Dict[int, List[str]]): Dictionary of clusters.

        Returns:
            Dict[int, List[str]]: Filtered dictionary of clusters.
        """
        filtered_clusters = {}
        for cluster_id, texts in clusters.items():
            # Concatenate texts for analysis
            full_text = " ".join(texts)
            # Count words
            word_count = len(full_text.split())
            
            # Keep clusters with word count above the threshold
            if word_count >= self.word_count_threshold:
                filtered_clusters[cluster_id] = texts

        return filtered_clusters

    def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Extract clusters from HTML content using hierarchical clustering.

        Args:
            url (str): The URL of the webpage.
            html (str): The HTML content of the webpage.

        Returns:
            List[Dict[str, Any]]: A list of processed JSON blocks.
        """
        # Assume `html` is a list of text chunks for this strategy
        t = time.time()
        text_chunks = html.split(self.DEL)  # Split by lines or paragraphs as needed
        
        # Pre-filter documents using embeddings and semantic_filter
        text_chunks = self.filter_documents_embeddings(text_chunks, self.semantic_filter)

        if not text_chunks:
            return []

        # Perform clustering
        labels = self.hierarchical_clustering(text_chunks)
        # print(f"[LOG] 🚀 Clustering done in {time.time() - t:.2f} seconds")

        # Organize texts by their cluster labels, retaining order
        t = time.time()
        clusters = {}
        for index, label in enumerate(labels):
            clusters.setdefault(label, []).append(text_chunks[index])

        # Filter clusters by word count
        filtered_clusters = self.filter_clusters_by_word_count(clusters)

        # Convert filtered clusters to a sorted list of dictionaries
        cluster_list = [{"index": int(idx), "tags" : [], "content": " ".join(filtered_clusters[idx])} for idx in sorted(filtered_clusters)]
        
        if self.verbose:
            print(f"[LOG] 🚀 Assign tags using {self.device}")
        
        if self.device.type in ["gpu", "cuda", "mps", "cpu"]:
            labels = self.nlp([cluster['content'] for cluster in cluster_list])
            
            for cluster, label in zip(cluster_list, labels):
                cluster['tags'] = label
        # elif self.device.type == "cpu":
        #     # Process the text with the loaded model
        #     texts = [cluster['content'] for cluster in cluster_list]
        #     # Batch process texts
        #     docs = self.nlp.pipe(texts, disable=["tagger", "parser", "ner", "lemmatizer"])

        #     for doc, cluster in zip(docs, cluster_list):
        #         tok_k = self.top_k
        #         top_categories = sorted(doc.cats.items(), key=lambda x: x[1], reverse=True)[:tok_k]
        #         cluster['tags'] = [cat for cat, _ in top_categories]
                            
            # for cluster in  cluster_list:
            #     doc = self.nlp(cluster['content'])
            #     tok_k = self.top_k
            #     top_categories = sorted(doc.cats.items(), key=lambda x: x[1], reverse=True)[:tok_k]
            #     cluster['tags'] = [cat for cat, _ in top_categories]
        
        if self.verbose:
            print(f"[LOG] 🚀 Categorization done in {time.time() - t:.2f} seconds")
        
        return cluster_list

    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Process sections using hierarchical clustering.

        Args:
            url (str): The URL of the webpage.
            sections (List[str]): List of sections (strings) to process.

        Returns:
        """
        # This strategy processes all sections together
        
        return self.extract(url, self.DEL.join(sections), **kwargs)
    
#######################################################
# New extraction strategies for JSON-based extraction #
####################################################### 

class JsonElementExtractionStrategy(ExtractionStrategy):
    """
    Abstract base class for extracting structured JSON from HTML content.

    How it works:
    1. Parses HTML content using the `_parse_html` method.
    2. Uses a schema to define base selectors, fields, and transformations.
    3. Extracts data hierarchically, supporting nested fields and lists.
    4. Handles computed fields with expressions or functions.

    Attributes:
        DEL (str): Delimiter used to combine HTML sections. Defaults to '\n'.
        schema (Dict[str, Any]): The schema defining the extraction rules.
        verbose (bool): Enables verbose logging for debugging purposes.

    Methods:
        extract(url, html_content, *q, **kwargs): Extracts structured data from HTML content.
        _extract_item(element, fields): Extracts fields from a single element.
        _extract_single_field(element, field): Extracts a single field based on its type.
        _apply_transform(value, transform): Applies a transformation to a value.
        _compute_field(item, field): Computes a field value using an expression or function.
        run(url, sections, *q, **kwargs): Combines HTML sections and runs the extraction strategy.

    Abstract Methods:
        _parse_html(html_content): Parses raw HTML into a structured format (e.g., BeautifulSoup or lxml).
        _get_base_elements(parsed_html, selector): Retrieves base elements using a selector.
        _get_elements(element, selector): Retrieves child elements using a selector.
        _get_element_text(element): Extracts text content from an element.
        _get_element_html(element): Extracts raw HTML from an element.
        _get_element_attribute(element, attribute): Extracts an attribute's value from an element.
    """

    
    DEL = '\n'

    def __init__(self, schema: Dict[str, Any], **kwargs):
        """
        Initialize the JSON element extraction strategy with a schema.

        Args:
            schema (Dict[str, Any]): The schema defining the extraction rules.
        """
        super().__init__(**kwargs)
        self.schema = schema
        self.verbose = kwargs.get('verbose', False)

    def extract(self, url: str, html_content: str, *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Extract structured data from HTML content.

        How it works:
        1. Parses the HTML content using the `_parse_html` method.
        2. Identifies base elements using the schema's base selector.
        3. Extracts fields from each base element using `_extract_item`.

        Args:
            url (str): The URL of the page being processed.
            html_content (str): The raw HTML content to parse and extract.
            *q: Additional positional arguments.
            **kwargs: Additional keyword arguments for custom extraction.

        Returns:
            List[Dict[str, Any]]: A list of extracted items, each represented as a dictionary.
        """
        
        parsed_html = self._parse_html(html_content)
        base_elements = self._get_base_elements(parsed_html, self.schema['baseSelector'])
        
        results = []
        for element in base_elements:
            # Extract base element attributes
            item = {}
            if 'baseFields' in self.schema:
                for field in self.schema['baseFields']:
                    value = self._extract_single_field(element, field)
                    if value is not None:
                        item[field['name']] = value
            
            # Extract child fields
            field_data = self._extract_item(element, self.schema['fields'])
            item.update(field_data)
            
            if item:
                results.append(item)
        
        return results

    @abstractmethod
    def _parse_html(self, html_content: str):
        """Parse HTML content into appropriate format"""
        pass

    @abstractmethod
    def _get_base_elements(self, parsed_html, selector: str):
        """Get all base elements using the selector"""
        pass

    @abstractmethod
    def _get_elements(self, element, selector: str):
        """Get child elements using the selector"""
        pass

    def _extract_field(self, element, field):
        try:
            if field['type'] == 'nested':
                nested_elements = self._get_elements(element, field['selector'])
                nested_element = nested_elements[0] if nested_elements else None
                return self._extract_item(nested_element, field['fields']) if nested_element else {}
            
            if field['type'] == 'list':
                elements = self._get_elements(element, field['selector'])
                return [self._extract_list_item(el, field['fields']) for el in elements]
            
            if field['type'] == 'nested_list':
                elements = self._get_elements(element, field['selector'])
                return [self._extract_item(el, field['fields']) for el in elements]
            
            return self._extract_single_field(element, field)
        except Exception as e:
            if self.verbose:
                print(f"Error extracting field {field['name']}: {str(e)}")
            return field.get('default')

    def _extract_single_field(self, element, field):
        """
        Extract a single field based on its type.

        How it works:
        1. Selects the target element using the field's selector.
        2. Extracts the field value based on its type (e.g., text, attribute, regex).
        3. Applies transformations if defined in the schema.

        Args:
            element: The base element to extract the field from.
            field (Dict[str, Any]): The field definition in the schema.

        Returns:
            Any: The extracted field value.
        """
        
        if 'selector' in field:
            selected = self._get_elements(element, field['selector'])
            if not selected:
                return field.get('default')
            selected = selected[0]
        else:
            selected = element

        value = None
        if field['type'] == 'text':
            value = self._get_element_text(selected)
        elif field['type'] == 'attribute':
            value = self._get_element_attribute(selected, field['attribute'])
        elif field['type'] == 'html':
            value = self._get_element_html(selected)
        elif field['type'] == 'regex':
            text = self._get_element_text(selected)
            match = re.search(field['pattern'], text)
            value = match.group(1) if match else None

        if 'transform' in field:
            value = self._apply_transform(value, field['transform'])

        return value if value is not None else field.get('default')

    def _extract_list_item(self, element, fields):
        item = {}
        for field in fields:
            value = self._extract_single_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item

    def _extract_item(self, element, fields):
        """
        Extracts fields from a given element.

        How it works:
        1. Iterates through the fields defined in the schema.
        2. Handles computed, single, and nested field types.
        3. Updates the item dictionary with extracted field values.

        Args:
            element: The base element to extract fields from.
            fields (List[Dict[str, Any]]): The list of fields to extract.

        Returns:
            Dict[str, Any]: A dictionary representing the extracted item.
        """
        
        item = {}
        for field in fields:
            if field['type'] == 'computed':
                value = self._compute_field(item, field)
            else:
                value = self._extract_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item

    def _apply_transform(self, value, transform):
        """
        Apply a transformation to a value.

        How it works:
        1. Checks the transformation type (e.g., `lowercase`, `strip`).
        2. Applies the transformation to the value.
        3. Returns the transformed value.

        Args:
            value (str): The value to transform.
            transform (str): The type of transformation to apply.

        Returns:
            str: The transformed value.
        """
        
        if transform == 'lowercase':
            return value.lower()
        elif transform == 'uppercase':
            return value.upper()
        elif transform == 'strip':
            return value.strip()
        return value

    def _compute_field(self, item, field):
        try:
            if 'expression' in field:
                return eval(field['expression'], {}, item)
            elif 'function' in field:
                return field['function'](item)
        except Exception as e:
            if self.verbose:
                print(f"Error computing field {field['name']}: {str(e)}")
            return field.get('default')

    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Run the extraction strategy on a combined HTML content.

        How it works:
        1. Combines multiple HTML sections using the `DEL` delimiter.
        2. Calls the `extract` method with the combined HTML.

        Args:
            url (str): The URL of the page being processed.
            sections (List[str]): A list of HTML sections.
            *q: Additional positional arguments.
            **kwargs: Additional keyword arguments for custom extraction.

        Returns:
            List[Dict[str, Any]]: A list of extracted items.
        """
        
        combined_html = self.DEL.join(sections)
        return self.extract(url, combined_html, **kwargs)

    @abstractmethod
    def _get_element_text(self, element) -> str:
        """Get text content from element"""
        pass

    @abstractmethod
    def _get_element_html(self, element) -> str:
        """Get HTML content from element"""
        pass

    @abstractmethod
    def _get_element_attribute(self, element, attribute: str):
        """Get attribute value from element"""
        pass

class JsonCssExtractionStrategy(JsonElementExtractionStrategy):
    """
    Concrete implementation of `JsonElementExtractionStrategy` using CSS selectors.

    How it works:
    1. Parses HTML content with BeautifulSoup.
    2. Selects elements using CSS selectors defined in the schema.
    3. Extracts field data and applies transformations as defined.

    Attributes:
        schema (Dict[str, Any]): The schema defining the extraction rules.
        verbose (bool): Enables verbose logging for debugging purposes.

    Methods:
        _parse_html(html_content): Parses HTML content into a BeautifulSoup object.
        _get_base_elements(parsed_html, selector): Selects base elements using a CSS selector.
        _get_elements(element, selector): Selects child elements using a CSS selector.
        _get_element_text(element): Extracts text content from a BeautifulSoup element.
        _get_element_html(element): Extracts the raw HTML content of a BeautifulSoup element.
        _get_element_attribute(element, attribute): Retrieves an attribute value from a BeautifulSoup element.
    """
    
    def __init__(self, schema: Dict[str, Any], **kwargs):
        kwargs['input_format'] = 'html'  # Force HTML input
        super().__init__(schema, **kwargs)

    def _parse_html(self, html_content: str):
        return BeautifulSoup(html_content, 'html.parser')

    def _get_base_elements(self, parsed_html, selector: str):
        return parsed_html.select(selector)

    def _get_elements(self, element, selector: str):
        selected = element.select_one(selector)
        return [selected] if selected else []

    def _get_element_text(self, element) -> str:
        return element.get_text(strip=True)

    def _get_element_html(self, element) -> str:
        return str(element)

    def _get_element_attribute(self, element, attribute: str):
        return element.get(attribute)

class JsonXPathExtractionStrategy(JsonElementExtractionStrategy):
    """
    Concrete implementation of `JsonElementExtractionStrategy` using XPath selectors.

    How it works:
    1. Parses HTML content into an lxml tree.
    2. Selects elements using XPath expressions.
    3. Converts CSS selectors to XPath when needed.

    Attributes:
        schema (Dict[str, Any]): The schema defining the extraction rules.
        verbose (bool): Enables verbose logging for debugging purposes.

    Methods:
        _parse_html(html_content): Parses HTML content into an lxml tree.
        _get_base_elements(parsed_html, selector): Selects base elements using an XPath selector.
        _css_to_xpath(css_selector): Converts a CSS selector to an XPath expression.
        _get_elements(element, selector): Selects child elements using an XPath selector.
        _get_element_text(element): Extracts text content from an lxml element.
        _get_element_html(element): Extracts the raw HTML content of an lxml element.
        _get_element_attribute(element, attribute): Retrieves an attribute value from an lxml element.
    """
    
    def __init__(self, schema: Dict[str, Any], **kwargs):
        kwargs['input_format'] = 'html'  # Force HTML input
        super().__init__(schema, **kwargs)

    def _parse_html(self, html_content: str):
        return html.fromstring(html_content)

    def _get_base_elements(self, parsed_html, selector: str):
        return parsed_html.xpath(selector)

    def _css_to_xpath(self, css_selector: str) -> str:
        """Convert CSS selector to XPath if needed"""
        if '/' in css_selector:  # Already an XPath
            return css_selector
        return self._basic_css_to_xpath(css_selector)

    def _basic_css_to_xpath(self, css_selector: str) -> str:
        """Basic CSS to XPath conversion for common cases"""
        if ' > ' in css_selector:
            parts = css_selector.split(' > ')
            return '//' + '/'.join(parts)
        if ' ' in css_selector:
            parts = css_selector.split(' ')
            return '//' + '//'.join(parts)
        return '//' + css_selector

    def _get_elements(self, element, selector: str):
        xpath = self._css_to_xpath(selector)
        if not xpath.startswith('.'):
            xpath = '.' + xpath
        return element.xpath(xpath)

    def _get_element_text(self, element) -> str:
        return ''.join(element.xpath('.//text()')).strip()

    def _get_element_html(self, element) -> str:
        return etree.tostring(element, encoding='unicode')

    def _get_element_attribute(self, element, attribute: str):
        return element.get(attribute)
 

#######################################################
# Strategies based on the extraction of specific types#
#######################################################
    
class TopicExtractionStrategy(ExtractionStrategy):
    def __init__(self, num_keywords: int = 3, **kwargs):
        """
        Initialize the topic extraction strategy with parameters for topic segmentation.

        :param num_keywords: Number of keywords to represent each topic segment.
        """
        import nltk
        super().__init__(**kwargs)
        self.num_keywords = num_keywords
        self.tokenizer = nltk.TextTilingTokenizer()

    def extract_keywords(self, text: str) -> List[str]:
        """
        Extract keywords from a given text segment using simple frequency analysis.

        :param text: The text segment from which to extract keywords.
        :return: A list of keyword strings.
        """
        import nltk
        # Tokenize the text and compute word frequency
        words = nltk.word_tokenize(text)
        freq_dist = nltk.FreqDist(words)
        # Get the most common words as keywords
        keywords = [word for (word, _) in freq_dist.most_common(self.num_keywords)]
        return keywords

    def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Extract topics from HTML content using TextTiling for segmentation and keyword extraction.

        :param url: The URL of the webpage.
        :param html: The HTML content of the webpage.
        :param provider: The provider to be used for extraction (not used here).
        :param api_token: Optional API token for the provider (not used here).
        :return: A list of dictionaries representing the topics.
        """
        # Use TextTiling to segment the text into topics
        segmented_topics = html.split(self.DEL)  # Split by lines or paragraphs as needed

        # Prepare the output as a list of dictionaries
        topic_list = []
        for i, segment in enumerate(segmented_topics):
            # Extract keywords for each segment
            keywords = self.extract_keywords(segment)
            topic_list.append({
                "index": i,
                "content": segment,
                "keywords": keywords
            })

        return topic_list

    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        """
        Process sections using topic segmentation and keyword extraction.

        :param url: The URL of the webpage.
        :param sections: List of sections (strings) to process.
        :param provider: The provider to be used for extraction (not used here).
        :param api_token: Optional API token for the provider (not used here).
        :return: A list of processed JSON blocks.
        """
        # Concatenate sections into a single text for coherent topic segmentation
        
        
        return self.extract(url, self.DEL.join(sections), **kwargs)
    
class ContentSummarizationStrategy(ExtractionStrategy):
    def __init__(self, model_name: str = "sshleifer/distilbart-cnn-12-6", **kwargs):
        """
        Initialize the content summarization strategy with a specific model.

        :param model_name: The model to use for summarization.
        """
        super().__init__(**kwargs)
        from transformers import pipeline
        self.summarizer = pipeline("summarization", model=model_name)

    def extract(self, url: str, text: str, provider: str = None, api_token: Optional[str] = None) -> List[Dict[str, Any]]:
        """
        Summarize a single section of text.

        :param url: The URL of the webpage.
        :param text: A section of text to summarize.
        :param provider: The provider to be used for extraction (not used here).
        :param api_token: Optional API token for the provider (not used here).
        :return: A dictionary with the summary.
        """
        try:
            summary = self.summarizer(text, max_length=130, min_length=30, do_sample=False)
            return {"summary": summary[0]['summary_text']}
        except Exception as e:
            print(f"Error summarizing text: {e}")
            return {"summary": text}  # Fallback to original text if summarization fails

    def run(self, url: str, sections: List[str], provider: str = None, api_token: Optional[str] = None) -> List[Dict[str, Any]]:
        """
        Process each section in parallel to produce summaries.

        :param url: The URL of the webpage.
        :param sections: List of sections (strings) to summarize.
        :param provider: The provider to be used for extraction (not used here).
        :param api_token: Optional API token for the provider (not used here).
        :return: A list of dictionaries with summaries for each section.
        """
        # Use a ThreadPoolExecutor to summarize in parallel
        summaries = []
        with ThreadPoolExecutor() as executor:
            # Create a future for each section's summarization
            future_to_section = {executor.submit(self.extract, url, section, provider, api_token): i for i, section in enumerate(sections)}
            for future in as_completed(future_to_section):
                section_index = future_to_section[future]
                try:
                    summary_result = future.result()
                    summaries.append((section_index, summary_result))
                except Exception as e:
                    print(f"Error processing section {section_index}: {e}")
                    summaries.append((section_index, {"summary": sections[section_index]}))  # Fallback to original text

        # Sort summaries by the original section index to maintain order
        summaries.sort(key=lambda x: x[0])
        return [summary for _, summary in summaries]
 
#######################################################
# Deprecated strategies
#######################################################
 
class _JsonCssExtractionStrategy(ExtractionStrategy):
    def __init__(self, schema: Dict[str, Any], **kwargs):
        kwargs['input_format'] = 'html'  # Force HTML input
        super().__init__(**kwargs)
        self.schema = schema

    def extract(self, url: str, html: str, *q, **kwargs) -> List[Dict[str, Any]]:
        soup = BeautifulSoup(html, 'html.parser')
        base_elements = soup.select(self.schema['baseSelector'])
        
        results = []
        for element in base_elements:
            # Extract base element attributes first
            item = {}
            if 'baseFields' in self.schema:
                for field in self.schema['baseFields']:
                    value = self._extract_single_field(element, field)
                    if value is not None:
                        item[field['name']] = value
            
            # Then extract child fields
            field_data = self._extract_item(element, self.schema['fields'])
            item.update(field_data)
            
            results.append(item)
        
        return results

    def _extract_field(self, element, field):
        try:
            if field['type'] == 'nested':
                nested_element = element.select_one(field['selector'])
                return self._extract_item(nested_element, field['fields']) if nested_element else {}
            
            if field['type'] == 'list':
                elements = element.select(field['selector'])
                return [self._extract_list_item(el, field['fields']) for el in elements]
            
            if field['type'] == 'nested_list':
                elements = element.select(field['selector'])
                return [self._extract_item(el, field['fields']) for el in elements]
            
            return self._extract_single_field(element, field)
        except Exception as e:
            if self.verbose:
                print(f"Error extracting field {field['name']}: {str(e)}")
            return field.get('default')

    def _extract_list_item(self, element, fields):
        item = {}
        for field in fields:
            value = self._extract_single_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item
    
    def _extract_single_field(self, element, field):
        if 'selector' in field:
            selected = element.select_one(field['selector'])
            if not selected:
                return field.get('default')
        else:
            selected = element

        value = None
        if field['type'] == 'text':
            value = selected.get_text(strip=True)
        elif field['type'] == 'attribute':
            value = selected.get(field['attribute'])
        elif field['type'] == 'html':
            value = str(selected)
        elif field['type'] == 'regex':
            text = selected.get_text(strip=True)
            match = re.search(field['pattern'], text)
            value = match.group(1) if match else None

        if 'transform' in field:
            value = self._apply_transform(value, field['transform'])

        return value if value is not None else field.get('default')

    def _extract_item(self, element, fields):
        item = {}
        for field in fields:
            if field['type'] == 'computed':
                value = self._compute_field(item, field)
            else:
                value = self._extract_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item
    
    def _apply_transform(self, value, transform):
        if transform == 'lowercase':
            return value.lower()
        elif transform == 'uppercase':
            return value.upper()
        elif transform == 'strip':
            return value.strip()
        return value

    def _compute_field(self, item, field):
        try:
            if 'expression' in field:
                return eval(field['expression'], {}, item)
            elif 'function' in field:
                return field['function'](item)
        except Exception as e:
            if self.verbose:
                print(f"Error computing field {field['name']}: {str(e)}")
            return field.get('default')

    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        combined_html = self.DEL.join(sections)
        return self.extract(url, combined_html, **kwargs)
class _JsonXPathExtractionStrategy(ExtractionStrategy):
    def __init__(self, schema: Dict[str, Any], **kwargs):
        kwargs['input_format'] = 'html'  # Force HTML input
        super().__init__(**kwargs)
        self.schema = schema

    def extract(self, url: str, html_content: str, *q, **kwargs) -> List[Dict[str, Any]]:
        tree = html.fromstring(html_content)
        base_xpath = self.schema['baseSelector']
        base_elements = tree.xpath(base_xpath)
        
        results = []
        for element in base_elements:
            # Extract base element attributes first
            item = {}
            if 'baseFields' in self.schema:
                for field in self.schema['baseFields']:
                    value = self._extract_single_field(element, field)
                    if value is not None:
                        item[field['name']] = value
            
            # Then extract child fields
            field_data = self._extract_item(element, self.schema['fields'])
            item.update(field_data)
            
            results.append(item)
        
        return results

    def _css_to_xpath(self, css_selector: str) -> str:
        """Convert CSS selector to XPath if needed"""
        if '/' in css_selector:  # Already an XPath
            return css_selector
        else:
            # Fallback to basic conversion for common cases
            return self._basic_css_to_xpath(css_selector)

    def _basic_css_to_xpath(self, css_selector: str) -> str:
        """Basic CSS to XPath conversion for common cases"""
        # Handle basic cases
        if ' > ' in css_selector:
            parts = css_selector.split(' > ')
            return '//' + '/'.join(parts)
        if ' ' in css_selector:
            parts = css_selector.split(' ')
            return '//' + '//'.join(parts)
        return '//' + css_selector

    def _extract_field(self, element, field):
        try:
            if field['type'] == 'nested':
                xpath = self._css_to_xpath(field['selector'])
                nested_element = element.xpath(xpath)[0] if element.xpath(xpath) else None
                return self._extract_item(nested_element, field['fields']) if nested_element is not None else {}
            
            if field['type'] == 'list':
                xpath = self._css_to_xpath(field['selector'])
                elements = element.xpath(xpath)
                return [self._extract_list_item(el, field['fields']) for el in elements]
            
            if field['type'] == 'nested_list':
                xpath = self._css_to_xpath(field['selector'])
                elements = element.xpath(xpath)
                return [self._extract_item(el, field['fields']) for el in elements]
            
            return self._extract_single_field(element, field)
        except Exception as e:
            if self.verbose:
                print(f"Error extracting field {field['name']}: {str(e)}")
            return field.get('default')

    def _extract_list_item(self, element, fields):
        item = {}
        for field in fields:
            value = self._extract_single_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item
    
    def _extract_single_field(self, element, field):
        if 'selector' in field:
            xpath = self._css_to_xpath(field['selector'])
            selected = element.xpath(xpath)
            if not selected:
                return field.get('default')
            selected = selected[0]
        else:
            selected = element

        value = None
        if field['type'] == 'text':
            value = ''.join(selected.xpath('.//text()')).strip()
        elif field['type'] == 'attribute':
            value = selected.get(field['attribute'])
        elif field['type'] == 'html':
            value = etree.tostring(selected, encoding='unicode')
        elif field['type'] == 'regex':
            text = ''.join(selected.xpath('.//text()')).strip()
            match = re.search(field['pattern'], text)
            value = match.group(1) if match else None

        if 'transform' in field:
            value = self._apply_transform(value, field['transform'])

        return value if value is not None else field.get('default')

    def _extract_item(self, element, fields):
        item = {}
        for field in fields:
            if field['type'] == 'computed':
                value = self._compute_field(item, field)
            else:
                value = self._extract_field(element, field)
            if value is not None:
                item[field['name']] = value
        return item
    
    def _apply_transform(self, value, transform):
        if transform == 'lowercase':
            return value.lower()
        elif transform == 'uppercase':
            return value.upper()
        elif transform == 'strip':
            return value.strip()
        return value

    def _compute_field(self, item, field):
        try:
            if 'expression' in field:
                return eval(field['expression'], {}, item)
            elif 'function' in field:
                return field['function'](item)
        except Exception as e:
            if self.verbose:
                print(f"Error computing field {field['name']}: {str(e)}")
            return field.get('default')

    def run(self, url: str, sections: List[str], *q, **kwargs) -> List[Dict[str, Any]]:
        combined_html = self.DEL.join(sections)
        return self.extract(url, combined_html, **kwargs)