File size: 9,152 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from functools import lru_cache
from pathlib import Path
import subprocess, os
import shutil
import tarfile
from .model_loader import *
import argparse
import urllib.request
from crawl4ai.config import MODEL_REPO_BRANCH
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
@lru_cache()
def get_available_memory(device):
import torch
if device.type == 'cuda':
return torch.cuda.get_device_properties(device).total_memory
elif device.type == 'mps':
return 48 * 1024 ** 3 # Assuming 8GB for MPS, as a conservative estimate
else:
return 0
@lru_cache()
def calculate_batch_size(device):
available_memory = get_available_memory(device)
if device.type == 'cpu':
return 16
elif device.type in ['cuda', 'mps']:
# Adjust these thresholds based on your model size and available memory
if available_memory >= 31 * 1024 ** 3: # > 32GB
return 256
elif available_memory >= 15 * 1024 ** 3: # > 16GB to 32GB
return 128
elif available_memory >= 8 * 1024 ** 3: # 8GB to 16GB
return 64
else:
return 32
else:
return 16 # Default batch size
@lru_cache()
def get_device():
import torch
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
return device
def set_model_device(model):
device = get_device()
model.to(device)
return model, device
@lru_cache()
def get_home_folder():
home_folder = os.path.join(os.getenv("CRAWL4_AI_BASE_DIRECTORY", Path.home()), ".crawl4ai")
os.makedirs(home_folder, exist_ok=True)
os.makedirs(f"{home_folder}/cache", exist_ok=True)
os.makedirs(f"{home_folder}/models", exist_ok=True)
return home_folder
@lru_cache()
def load_bert_base_uncased():
from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', resume_download=None)
model = BertModel.from_pretrained('bert-base-uncased', resume_download=None)
model.eval()
model, device = set_model_device(model)
return tokenizer, model
@lru_cache()
def load_HF_embedding_model(model_name="BAAI/bge-small-en-v1.5") -> tuple:
"""Load the Hugging Face model for embedding.
Args:
model_name (str, optional): The model name to load. Defaults to "BAAI/bge-small-en-v1.5".
Returns:
tuple: The tokenizer and model.
"""
from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained(model_name, resume_download=None)
model = AutoModel.from_pretrained(model_name, resume_download=None)
model.eval()
model, device = set_model_device(model)
return tokenizer, model
@lru_cache()
def load_text_classifier():
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
model.eval()
model, device = set_model_device(model)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
return pipe
@lru_cache()
def load_text_multilabel_classifier():
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import numpy as np
from scipy.special import expit
import torch
# # Check for available device: CUDA, MPS (for Apple Silicon), or CPU
# if torch.cuda.is_available():
# device = torch.device("cuda")
# elif torch.backends.mps.is_available():
# device = torch.device("mps")
# else:
# device = torch.device("cpu")
# # return load_spacy_model(), torch.device("cpu")
MODEL = "cardiffnlp/tweet-topic-21-multi"
tokenizer = AutoTokenizer.from_pretrained(MODEL, resume_download=None)
model = AutoModelForSequenceClassification.from_pretrained(MODEL, resume_download=None)
model.eval()
model, device = set_model_device(model)
class_mapping = model.config.id2label
def _classifier(texts, threshold=0.5, max_length=64):
tokens = tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=max_length)
tokens = {key: val.to(device) for key, val in tokens.items()} # Move tokens to the selected device
with torch.no_grad():
output = model(**tokens)
scores = output.logits.detach().cpu().numpy()
scores = expit(scores)
predictions = (scores >= threshold) * 1
batch_labels = []
for prediction in predictions:
labels = [class_mapping[i] for i, value in enumerate(prediction) if value == 1]
batch_labels.append(labels)
return batch_labels
return _classifier, device
@lru_cache()
def load_nltk_punkt():
import nltk
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
return nltk.data.find('tokenizers/punkt')
@lru_cache()
def load_spacy_model():
import spacy
name = "models/reuters"
home_folder = get_home_folder()
model_folder = Path(home_folder) / name
# Check if the model directory already exists
if not (model_folder.exists() and any(model_folder.iterdir())):
repo_url = "https://github.com/unclecode/crawl4ai.git"
branch = MODEL_REPO_BRANCH
repo_folder = Path(home_folder) / "crawl4ai"
print("[LOG] ⏬ Downloading Spacy model for the first time...")
# Remove existing repo folder if it exists
if repo_folder.exists():
try:
shutil.rmtree(repo_folder)
if model_folder.exists():
shutil.rmtree(model_folder)
except PermissionError:
print("[WARNING] Unable to remove existing folders. Please manually delete the following folders and try again:")
print(f"- {repo_folder}")
print(f"- {model_folder}")
return None
try:
# Clone the repository
subprocess.run(
["git", "clone", "-b", branch, repo_url, str(repo_folder)],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
check=True
)
# Create the models directory if it doesn't exist
models_folder = Path(home_folder) / "models"
models_folder.mkdir(parents=True, exist_ok=True)
# Copy the reuters model folder to the models directory
source_folder = repo_folder / "models" / "reuters"
shutil.copytree(source_folder, model_folder)
# Remove the cloned repository
shutil.rmtree(repo_folder)
print("[LOG] ✅ Spacy Model downloaded successfully")
except subprocess.CalledProcessError as e:
print(f"An error occurred while cloning the repository: {e}")
return None
except Exception as e:
print(f"An error occurred: {e}")
return None
try:
return spacy.load(str(model_folder))
except Exception as e:
print(f"Error loading spacy model: {e}")
return None
def download_all_models(remove_existing=False):
"""Download all models required for Crawl4AI."""
if remove_existing:
print("[LOG] Removing existing models...")
home_folder = get_home_folder()
model_folders = [
os.path.join(home_folder, "models/reuters"),
os.path.join(home_folder, "models"),
]
for folder in model_folders:
if Path(folder).exists():
shutil.rmtree(folder)
print("[LOG] Existing models removed.")
# Load each model to trigger download
# print("[LOG] Downloading BERT Base Uncased...")
# load_bert_base_uncased()
# print("[LOG] Downloading BGE Small EN v1.5...")
# load_bge_small_en_v1_5()
# print("[LOG] Downloading ONNX model...")
# load_onnx_all_MiniLM_l6_v2()
print("[LOG] Downloading text classifier...")
_, device = load_text_multilabel_classifier()
print(f"[LOG] Text classifier loaded on {device}")
print("[LOG] Downloading custom NLTK Punkt model...")
load_nltk_punkt()
print("[LOG] ✅ All models downloaded successfully.")
def main():
print("[LOG] Welcome to the Crawl4AI Model Downloader!")
print("[LOG] This script will download all the models required for Crawl4AI.")
parser = argparse.ArgumentParser(description="Crawl4AI Model Downloader")
parser.add_argument('--remove-existing', action='store_true', help="Remove existing models before downloading")
args = parser.parse_args()
download_all_models(remove_existing=args.remove_existing)
if __name__ == "__main__":
main()
|