Spaces:
Runtime error
Runtime error
"""Find your apparel effortlessly. Just describe your apparel and get the relevant recommendations with links!""" | |
import argparse | |
import logging | |
import os | |
import wandb | |
import gradio as gr | |
import base64 | |
import zipfile | |
import pickle | |
from pathlib import Path | |
from typing import List, Any, Dict | |
from PIL import Image | |
from pathlib import Path | |
from transformers import AutoTokenizer | |
from sentence_transformers import SentenceTransformer, util | |
from multilingual_clip import pt_multilingual_clip | |
import torch | |
from pathlib import Path | |
from typing import Callable, Dict, List, Tuple | |
from PIL.Image import Image | |
print(__file__) | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU | |
logging.basicConfig(level=logging.INFO) | |
DEFAULT_APPLICATION_NAME = "fashion-aggregator" | |
APP_DIR = Path(__file__).resolve().parent # what is the directory for this application? | |
LOGO = APP_DIR / "temp.jpg" # path to a small image for display in browser tab and social media | |
README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown | |
DEFAULT_PORT = 11700 | |
EMBEDDINGS_DIR = "artifacts/img-embeddings" | |
EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl") | |
RAW_PHOTOS_DIR = "artifacts/raw-photos" | |
# Download image embeddings and raw photos | |
wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4") # os.getenv('wandb') | |
api = wandb.Api() | |
artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1") | |
artifact_embeddings.download(EMBEDDINGS_DIR) | |
artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1") | |
artifact_raw_photos.download("artifacts") | |
with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref: | |
zip_ref.extractall(RAW_PHOTOS_DIR) | |
class TextEncoder: | |
"""Encodes the given text""" | |
def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"): | |
self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
def encode(self, query: str) -> torch.Tensor: | |
"""Predict/infer text embedding for a given query.""" | |
query_emb = self.model.forward([query], self.tokenizer) | |
return query_emb | |
class ImageEnoder: | |
"""Encodes the given image""" | |
def __init__(self, model_path="clip-ViT-B-32"): | |
self.model = SentenceTransformer(model_path) | |
def encode(self, image: Image) -> torch.Tensor: | |
"""Predict/infer text embedding for a given query.""" | |
image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False) | |
return image_emb | |
class Retriever: | |
"""Retrieves relevant images for a given text embedding.""" | |
def __init__(self, image_embeddings_path=None): | |
self.text_encoder = TextEncoder() | |
self.image_encoder = ImageEnoder() | |
with open(image_embeddings_path, "rb") as file: | |
self.image_names, self.image_embeddings = pickle.load(file) | |
self.image_names = [ | |
img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "") | |
for img_name in self.image_names | |
] | |
print("Images:", len(self.image_names)) | |
def predict(self, text_query: str, k: int = 10) -> List[Any]: | |
"""Return top-k relevant items for a given embedding""" | |
query_emb = self.text_encoder.encode(text_query) | |
relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0] | |
return relevant_images | |
def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]: | |
"""Return top-k relevant images for a given embedding""" | |
images = self.predict(text_query, k) | |
paths_and_scores = {"path": [], "score": []} | |
for img in images: | |
paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]])) | |
paths_and_scores["score"].append(img["score"]) | |
return paths_and_scores | |
class PredictorBackend: | |
"""Interface to a backend that serves predictions. | |
To communicate with a backend accessible via a URL, provide the url kwarg. | |
Otherwise, runs a predictor locally. | |
""" | |
def __init__(self, url=None): | |
if url is not None: | |
self.url = url | |
self._predict = self._predict_from_endpoint | |
else: | |
model = Retriever(image_embeddings_path=EMBEDDINGS_FILE) | |
self._predict = model.predict | |
self._search_images = model.search_images | |
def run(self, text: str): | |
pred, metrics = self._predict_with_metrics(text) | |
self._log_inference(pred, metrics) | |
return pred | |
def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]: | |
paths_and_scores = self._search_images(text) | |
metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])} | |
return paths_and_scores["path"], metrics | |
def _log_inference(self, pred, metrics): | |
for key, value in metrics.items(): | |
logging.info(f"METRIC {key} {value}") | |
logging.info(f"PRED >begin\n{pred}\nPRED >end") | |
predictor = PredictorBackend() | |
# Read the image file and encode it as base64 | |
with open("./1001epochs.png", "rb") as f: | |
image_data = f.read() | |
image_base64 = base64.b64encode(image_data).decode("utf-8") | |
allow_flagging = "never" | |
title = f""" | |
<h2 style="background-image: linear-gradient(to right, #3A5FCD, #87CEFA); -webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; text-align: center;"> | |
Fashion Aggregator | |
</h2> | |
""" | |
description = f""" | |
<div style="display: flex; align-items: center; justify-content: center; flex-direction: column;"> | |
<p style="font-size: 18px; color: #4AAAFF; text-align: center;"> | |
Discover your perfect apparel effortlessly. Simply describe what you're looking for! | |
</p> | |
<div style="display: flex; align-items: center; margin-bottom: 0px;"> | |
<img src='data:image/jpeg;base64,{image_base64}' width='50' height='30' style="margin-right: 5px;"/> | |
<p style="font-size: 14px; color: #555;"> | |
Disclaimer: The purpose of this application is solely for demonstration. 1001epochs does not claim ownership for the results. Contact: [email protected] for full solution. | |
</p> | |
</div> | |
</div> | |
""" | |
frontend = gr.Interface( | |
fn=predictor.run, | |
inputs=gr.inputs.Textbox(label="Item Description", placeholder="Enter item description here"), | |
outputs=gr.Gallery(label="Relevant Items", show_labels=True, label_position="below"), | |
title=title, | |
description=description, | |
cache_examples=False, # should we cache those inputs for faster inference? slows down start | |
allow_flagging=allow_flagging, # should we show users the option to "flag" outputs? | |
flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback? | |
) | |
frontend.launch() | |
# # Read the image file and encode it as base64 | |
# with open("./1001epochs.png", "rb") as f: | |
# image_data = f.read() | |
# image_base64 = base64.b64encode(image_data).decode("utf-8") | |
# allow_flagging = "never" | |
# title = f""" | |
# <h1 style="background-image: linear-gradient(to right, #ADD8E6, #87CEFA); -webkit-background-clip: text; | |
# -webkit-text-fill-color: transparent; text-align: center;"> | |
# Fashion Aggregator | |
# </h1> | |
# """ | |
# description = f""" | |
# <div style="display: flex; align-items: center; justify-content: center; flex-direction: column;"> | |
# <img src='data:image/jpeg;base64,{image_base64}' width='50' height='50' style="margin-right: 10px;"/> | |
# <p style="font-size: small; color: gray; margin-top: 10px;"> | |
# Disclaimer: This web app is for demonstration purposes only and not intended for commercial use. Contact: [email protected] for full solution. | |
# </p> | |
# <p style="font-size: 18px; color: blue; margin-top: 10px; text-align: center;"> | |
# Discover your perfect apparel effortlessly. Simply describe what you're looking for! | |
# </p> | |
# </div> | |
# """ | |
# frontend = gr.Interface( | |
# fn=predictor.run, | |
# inputs=gr.inputs.Textbox(label="Item Description", placeholder="Enter item description here"), | |
# outputs=gr.Gallery(label="Relevant Items", show_labels=True, label_position="below"), | |
# title=title, | |
# description=description, | |
# cache_examples=False, # should we cache those inputs for faster inference? slows down start | |
# allow_flagging=allow_flagging, # should we show users the option to "flag" outputs? | |
# flagging_options=["incorrect", "offensive", "other"], # what options do users have for feedback? | |
# ) | |
# frontend.launch( | |
# # server_name="0.0.0.0", # make server accessible, binding all interfaces # noqa: S104 | |
# # server_port=args.port, # set a port to bind to, failing if unavailable | |
# # share=False, # should we create a (temporary) public link on https://gradio.app? | |
# ) |