"""Find your apparel effortlessly. Just describe your apparel and get the relevant recommendations with links!""" import argparse import logging import os import wandb import gradio as gr import base64 import zipfile import pickle from pathlib import Path from typing import List, Any, Dict from PIL import Image from pathlib import Path from transformers import AutoTokenizer from sentence_transformers import SentenceTransformer, util from multilingual_clip import pt_multilingual_clip import torch from pathlib import Path from typing import Callable, Dict, List, Tuple from PIL.Image import Image print(__file__) os.environ["CUDA_VISIBLE_DEVICES"] = "" # do not use GPU logging.basicConfig(level=logging.INFO) DEFAULT_APPLICATION_NAME = "fashion-aggregator" APP_DIR = Path(__file__).resolve().parent # what is the directory for this application? LOGO = APP_DIR / "temp.jpg" # path to a small image for display in browser tab and social media README = APP_DIR / "README.md" # path to an app readme file in HTML/markdown DEFAULT_PORT = 11700 EMBEDDINGS_DIR = "artifacts/img-embeddings" EMBEDDINGS_FILE = os.path.join(EMBEDDINGS_DIR, "embeddings.pkl") RAW_PHOTOS_DIR = "artifacts/raw-photos" # Download image embeddings and raw photos wandb.login(key="4b5a23a662b20fdd61f2aeb5032cf56fdce278a4") # os.getenv('wandb') api = wandb.Api() artifact_embeddings = api.artifact("ryparmar/fashion-aggregator/unimoda-images:v1") artifact_embeddings.download(EMBEDDINGS_DIR) artifact_raw_photos = api.artifact("ryparmar/fashion-aggregator/unimoda-raw-images:v1") artifact_raw_photos.download("artifacts") with zipfile.ZipFile("artifacts/unimoda.zip", 'r') as zip_ref: zip_ref.extractall(RAW_PHOTOS_DIR) class TextEncoder: """Encodes the given text""" def __init__(self, model_path="M-CLIP/XLM-Roberta-Large-Vit-B-32"): self.model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) @torch.no_grad() def encode(self, query: str) -> torch.Tensor: """Predict/infer text embedding for a given query.""" query_emb = self.model.forward([query], self.tokenizer) return query_emb class ImageEnoder: """Encodes the given image""" def __init__(self, model_path="clip-ViT-B-32"): self.model = SentenceTransformer(model_path) @torch.no_grad() def encode(self, image: Image) -> torch.Tensor: """Predict/infer text embedding for a given query.""" image_emb = self.model.encode([image], convert_to_tensor=True, show_progress_bar=False) return image_emb class Retriever: """Retrieves relevant images for a given text embedding.""" def __init__(self, image_embeddings_path=None): self.text_encoder = TextEncoder() self.image_encoder = ImageEnoder() with open(image_embeddings_path, "rb") as file: self.image_names, self.image_embeddings = pickle.load(file) self.image_names = [ img_name.replace("fashion-aggregator/fashion_aggregator/data/photos/", "") for img_name in self.image_names ] print("Images:", len(self.image_names)) @torch.no_grad() def predict(self, text_query: str, k: int = 10) -> List[Any]: """Return top-k relevant items for a given embedding""" query_emb = self.text_encoder.encode(text_query) relevant_images = util.semantic_search(query_emb, self.image_embeddings, top_k=k)[0] return relevant_images @torch.no_grad() def search_images(self, text_query: str, k: int = 6) -> Dict[str, List[Any]]: """Return top-k relevant images for a given embedding""" images = self.predict(text_query, k) paths_and_scores = {"path": [], "score": []} for img in images: paths_and_scores["path"].append(os.path.join(RAW_PHOTOS_DIR, self.image_names[img["corpus_id"]])) paths_and_scores["score"].append(img["score"]) return paths_and_scores class PredictorBackend: """Interface to a backend that serves predictions. To communicate with a backend accessible via a URL, provide the url kwarg. Otherwise, runs a predictor locally. """ def __init__(self, url=None): if url is not None: self.url = url self._predict = self._predict_from_endpoint else: model = Retriever(image_embeddings_path=EMBEDDINGS_FILE) self._predict = model.predict self._search_images = model.search_images def run(self, text: str): pred, metrics = self._predict_with_metrics(text) self._log_inference(pred, metrics) return pred def _predict_with_metrics(self, text: str) -> Tuple[List[str], Dict[str, float]]: paths_and_scores = self._search_images(text) metrics = {"mean_score": sum(paths_and_scores["score"]) / len(paths_and_scores["score"])} return paths_and_scores["path"], metrics def _log_inference(self, pred, metrics): for key, value in metrics.items(): logging.info(f"METRIC {key} {value}") logging.info(f"PRED >begin\n{pred}\nPRED >end") predictor = PredictorBackend() # Read the image file and encode it as base64 with open("./1001epochs.png", "rb") as f: image_data = f.read() image_base64 = base64.b64encode(image_data).decode("utf-8") allow_flagging = "never" title = f"""
Discover your perfect apparel effortlessly. Simply describe what you're looking for!
Disclaimer: The purpose of this application is solely for demonstration. 1001epochs does not claim ownership for the results. Contact: contact@1001epochs.co.uk for full solution.
# Disclaimer: This web app is for demonstration purposes only and not intended for commercial use. Contact: contact@1001epochs.co.uk for full solution. #
## Discover your perfect apparel effortlessly. Simply describe what you're looking for! #
#