Spaces:
Sleeping
Sleeping
erikbeltran
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef
|
|
16 |
MAX_SEED = 2**32-1
|
17 |
|
18 |
@spaces.GPU()
|
19 |
-
def generate_image(prompt, width, height, lora_path, trigger_word, steps):
|
20 |
# Load LoRA weights
|
21 |
pipe.load_lora_weights(lora_path)
|
22 |
|
@@ -37,10 +37,14 @@ def generate_image(prompt, width, height, lora_path, trigger_word, steps):
|
|
37 |
generator=generator,
|
38 |
).images[0]
|
39 |
|
40 |
-
# Generate
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Save the image with the hash as filename
|
46 |
image_path = f"{image_hash}.png"
|
@@ -48,8 +52,8 @@ def generate_image(prompt, width, height, lora_path, trigger_word, steps):
|
|
48 |
|
49 |
return image, image_hash
|
50 |
|
51 |
-
def run_lora(prompt, width, height, lora_path, trigger_word, steps):
|
52 |
-
return generate_image(prompt, width, height, lora_path, trigger_word, steps)
|
53 |
|
54 |
# Set up the Gradio interface
|
55 |
with gr.Blocks() as app:
|
@@ -69,6 +73,9 @@ with gr.Blocks() as app:
|
|
69 |
with gr.Row():
|
70 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=28)
|
71 |
|
|
|
|
|
|
|
72 |
generate_button = gr.Button("Generate Image")
|
73 |
|
74 |
output_image = gr.Image(label="Generated Image")
|
@@ -76,7 +83,7 @@ with gr.Blocks() as app:
|
|
76 |
|
77 |
generate_button.click(
|
78 |
fn=run_lora,
|
79 |
-
inputs=[prompt, width, height, lora_path, trigger_word, steps],
|
80 |
outputs=[output_image, output_hash]
|
81 |
)
|
82 |
|
|
|
16 |
MAX_SEED = 2**32-1
|
17 |
|
18 |
@spaces.GPU()
|
19 |
+
def generate_image(prompt, width, height, lora_path, trigger_word, steps, custom_hash):
|
20 |
# Load LoRA weights
|
21 |
pipe.load_lora_weights(lora_path)
|
22 |
|
|
|
37 |
generator=generator,
|
38 |
).images[0]
|
39 |
|
40 |
+
# Generate or use provided hash for the image
|
41 |
+
if not custom_hash:
|
42 |
+
# Generate a hash if custom_hash is not provided
|
43 |
+
image_bytes = image.tobytes()
|
44 |
+
hash_object = hashlib.sha256(image_bytes)
|
45 |
+
image_hash = hash_object.hexdigest()
|
46 |
+
else:
|
47 |
+
image_hash = custom_hash
|
48 |
|
49 |
# Save the image with the hash as filename
|
50 |
image_path = f"{image_hash}.png"
|
|
|
52 |
|
53 |
return image, image_hash
|
54 |
|
55 |
+
def run_lora(prompt, width, height, lora_path, trigger_word, steps, custom_hash):
|
56 |
+
return generate_image(prompt, width, height, lora_path, trigger_word, steps, custom_hash)
|
57 |
|
58 |
# Set up the Gradio interface
|
59 |
with gr.Blocks() as app:
|
|
|
73 |
with gr.Row():
|
74 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=28)
|
75 |
|
76 |
+
with gr.Row():
|
77 |
+
custom_hash = gr.Textbox(label="Custom Hash (optional)", placeholder="Leave blank to auto-generate hash")
|
78 |
+
|
79 |
generate_button = gr.Button("Generate Image")
|
80 |
|
81 |
output_image = gr.Image(label="Generated Image")
|
|
|
83 |
|
84 |
generate_button.click(
|
85 |
fn=run_lora,
|
86 |
+
inputs=[prompt, width, height, lora_path, trigger_word, steps, custom_hash],
|
87 |
outputs=[output_image, output_hash]
|
88 |
)
|
89 |
|