Spaces:
Runtime error
Runtime error
add dice
Browse files- dice_coefficient.py +222 -50
dice_coefficient.py
CHANGED
@@ -11,85 +11,257 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
|
|
|
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
|
19 |
|
20 |
-
# TODO: Add BibTeX citation
|
21 |
-
_CITATION = """\
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
-
"""
|
28 |
-
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates how good are predictions given some references, using certain scores
|
38 |
Args:
|
39 |
-
predictions:
|
40 |
-
|
41 |
-
references:
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
|
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
>>>
|
51 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class DiceCoefficient(evaluate.Metric):
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
-
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
-
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
69 |
description=_DESCRIPTION,
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
'predictions': datasets.Value('int64'),
|
75 |
'references': datasets.Value('int64'),
|
76 |
}),
|
77 |
-
|
78 |
-
homepage="http://module.homepage",
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""Dice Coefficient Metric."""
|
15 |
|
16 |
+
from typing import Dict, Optional
|
17 |
+
import numpy as np
|
18 |
import evaluate
|
19 |
import datasets
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
_DESCRIPTION = """\
|
23 |
+
Dice coefficient is 2 times the are of overlap divided by the total number of pixels in both segmentation maps.
|
24 |
"""
|
25 |
|
26 |
|
|
|
27 |
_KWARGS_DESCRIPTION = """
|
|
|
28 |
Args:
|
29 |
+
predictions (`List[ndarray]`):
|
30 |
+
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
31 |
+
references (`List[ndarray]`):
|
32 |
+
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
|
33 |
+
num_labels (`int`):
|
34 |
+
Number of classes (categories).
|
35 |
+
ignore_index (`int`):
|
36 |
+
Index that will be ignored during evaluation.
|
37 |
+
nan_to_num (`int`, *optional*):
|
38 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
39 |
+
label_map (`dict`, *optional*):
|
40 |
+
If specified, dictionary mapping old label indices to new label indices.
|
41 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
43 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
44 |
Returns:
|
45 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
46 |
+
- *dice_score* (`float`):
|
47 |
+
Dice Coefficient.
|
48 |
Examples:
|
49 |
+
>>> import numpy as np
|
50 |
+
>>> dice = evaluate.load("DiceCoefficient")
|
51 |
+
>>> # suppose one has 3 different segmentation maps predicted
|
52 |
+
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
|
53 |
+
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
|
54 |
+
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
|
55 |
+
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
|
56 |
+
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
|
57 |
+
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
|
58 |
+
>>> predicted = [predicted_1, predicted_2, predicted_3]
|
59 |
+
>>> ground_truth = [actual_1, actual_2, actual_3]
|
60 |
+
>>> results = dice.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
|
61 |
>>> print(results)
|
62 |
+
{'dice_score': 0.47750000}
|
63 |
"""
|
64 |
|
65 |
+
_CITATION = """\
|
66 |
+
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
|
67 |
+
author = {{MMSegmentation Contributors}},
|
68 |
+
license = {Apache-2.0},
|
69 |
+
month = {7},
|
70 |
+
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
|
71 |
+
url = {https://github.com/open-mmlab/mmsegmentation},
|
72 |
+
year = {2020}
|
73 |
+
}"""
|
74 |
+
|
75 |
+
|
76 |
+
def intersect_and_union(
|
77 |
+
pred_label,
|
78 |
+
label,
|
79 |
+
num_labels,
|
80 |
+
ignore_index: bool,
|
81 |
+
label_map: Optional[Dict[int, int]] = None,
|
82 |
+
reduce_labels: bool = False,
|
83 |
+
):
|
84 |
+
"""Calculate intersection and Union.
|
85 |
+
Args:
|
86 |
+
pred_label (`ndarray`):
|
87 |
+
Prediction segmentation map of shape (height, width).
|
88 |
+
label (`ndarray`):
|
89 |
+
Ground truth segmentation map of shape (height, width).
|
90 |
+
num_labels (`int`):
|
91 |
+
Number of categories.
|
92 |
+
ignore_index (`int`):
|
93 |
+
Index that will be ignored during evaluation.
|
94 |
+
label_map (`dict`, *optional*):
|
95 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
96 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
98 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
99 |
+
Returns:
|
100 |
+
area_intersect (`ndarray`):
|
101 |
+
The intersection of prediction and ground truth histogram on all classes.
|
102 |
+
area_union (`ndarray`):
|
103 |
+
The union of prediction and ground truth histogram on all classes.
|
104 |
+
area_pred_label (`ndarray`):
|
105 |
+
The prediction histogram on all classes.
|
106 |
+
area_label (`ndarray`):
|
107 |
+
The ground truth histogram on all classes.
|
108 |
+
"""
|
109 |
+
if label_map is not None:
|
110 |
+
for old_id, new_id in label_map.items():
|
111 |
+
label[label == old_id] = new_id
|
112 |
+
|
113 |
+
# turn into Numpy arrays
|
114 |
+
pred_label = np.array(pred_label)
|
115 |
+
label = np.array(label)
|
116 |
+
|
117 |
+
if reduce_labels:
|
118 |
+
label[label == 0] = 255
|
119 |
+
label = label - 1
|
120 |
+
label[label == 254] = 255
|
121 |
+
|
122 |
+
mask = label != ignore_index
|
123 |
+
mask = np.not_equal(label, ignore_index)
|
124 |
+
pred_label = pred_label[mask]
|
125 |
+
label = np.array(label)[mask]
|
126 |
+
|
127 |
+
intersect = pred_label[pred_label == label]
|
128 |
+
|
129 |
+
area_intersect = np.histogram(intersect, bins=num_labels, range=(0, num_labels - 1))[0]
|
130 |
+
area_pred_label = np.histogram(pred_label, bins=num_labels, range=(0, num_labels - 1))[0]
|
131 |
+
area_label = np.histogram(label, bins=num_labels, range=(0, num_labels - 1))[0]
|
132 |
|
133 |
+
area_union = area_pred_label + area_label - area_intersect
|
134 |
+
|
135 |
+
return area_intersect, area_union, area_pred_label, area_label
|
136 |
+
|
137 |
+
|
138 |
+
def total_intersect_and_union(
|
139 |
+
results,
|
140 |
+
gt_seg_maps,
|
141 |
+
num_labels,
|
142 |
+
ignore_index: bool,
|
143 |
+
label_map: Optional[Dict[int, int]] = None,
|
144 |
+
reduce_labels: bool = False,
|
145 |
+
):
|
146 |
+
"""Calculate Total Intersection and Union, by calculating `intersect_and_union` for each (predicted, ground truth) pair.
|
147 |
+
Args:
|
148 |
+
results (`ndarray`):
|
149 |
+
List of prediction segmentation maps, each of shape (height, width).
|
150 |
+
gt_seg_maps (`ndarray`):
|
151 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
152 |
+
num_labels (`int`):
|
153 |
+
Number of categories.
|
154 |
+
ignore_index (`int`):
|
155 |
+
Index that will be ignored during evaluation.
|
156 |
+
label_map (`dict`, *optional*):
|
157 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
158 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
159 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
160 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
161 |
+
Returns:
|
162 |
+
total_area_intersect (`ndarray`):
|
163 |
+
The intersection of prediction and ground truth histogram on all classes.
|
164 |
+
total_area_union (`ndarray`):
|
165 |
+
The union of prediction and ground truth histogram on all classes.
|
166 |
+
total_area_pred_label (`ndarray`):
|
167 |
+
The prediction histogram on all classes.
|
168 |
+
total_area_label (`ndarray`):
|
169 |
+
The ground truth histogram on all classes.
|
170 |
+
"""
|
171 |
+
total_area_intersect = np.zeros((num_labels,), dtype=np.float64)
|
172 |
+
total_area_union = np.zeros((num_labels,), dtype=np.float64)
|
173 |
+
total_area_pred_label = np.zeros((num_labels,), dtype=np.float64)
|
174 |
+
total_area_label = np.zeros((num_labels,), dtype=np.float64)
|
175 |
+
for result, gt_seg_map in zip(results, gt_seg_maps):
|
176 |
+
area_intersect, area_union, area_pred_label, area_label = intersect_and_union(
|
177 |
+
result, gt_seg_map, num_labels, ignore_index, label_map, reduce_labels
|
178 |
+
)
|
179 |
+
total_area_intersect += area_intersect
|
180 |
+
total_area_union += area_union
|
181 |
+
total_area_pred_label += area_pred_label
|
182 |
+
total_area_label += area_label
|
183 |
+
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
|
184 |
+
|
185 |
+
|
186 |
+
def dice_coef(
|
187 |
+
results,
|
188 |
+
gt_seg_maps,
|
189 |
+
num_labels,
|
190 |
+
ignore_index: bool,
|
191 |
+
nan_to_num: Optional[int] = None,
|
192 |
+
label_map: Optional[Dict[int, int]] = None,
|
193 |
+
reduce_labels: bool = False,
|
194 |
+
):
|
195 |
+
"""Calculate Mean Dice Coefficient (mDSC).
|
196 |
+
Args:
|
197 |
+
results (`ndarray`):
|
198 |
+
List of prediction segmentation maps, each of shape (height, width).
|
199 |
+
gt_seg_maps (`ndarray`):
|
200 |
+
List of ground truth segmentation maps, each of shape (height, width).
|
201 |
+
num_labels (`int`):
|
202 |
+
Number of categories.
|
203 |
+
ignore_index (`int`):
|
204 |
+
Index that will be ignored during evaluation.
|
205 |
+
nan_to_num (`int`, *optional*):
|
206 |
+
If specified, NaN values will be replaced by the number defined by the user.
|
207 |
+
label_map (`dict`, *optional*):
|
208 |
+
Mapping old labels to new labels. The parameter will work only when label is str.
|
209 |
+
reduce_labels (`bool`, *optional*, defaults to `False`):
|
210 |
+
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
|
211 |
+
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
|
212 |
+
Returns:
|
213 |
+
`Dict[str, float | ndarray]` comprising various elements:
|
214 |
+
- *mean_dsc* (`float`):
|
215 |
+
Mean Dice Coefficient (DSC averaged over all categories).
|
216 |
+
"""
|
217 |
+
total_area_intersect, _, total_area_pred_label, total_area_label = total_intersect_and_union(
|
218 |
+
results, gt_seg_maps, num_labels, ignore_index, label_map, reduce_labels
|
219 |
+
)
|
220 |
+
|
221 |
+
result = dict()
|
222 |
+
dice = 2 * total_area_intersect / (total_area_pred_label + total_area_label)
|
223 |
+
result["dice_score"] = np.nanmean(dice)
|
224 |
+
|
225 |
+
if nan_to_num is not None:
|
226 |
+
metrics = dict(
|
227 |
+
{metric: np.nan_to_num(metric_value, nan=nan_to_num) for metric, metric_value in metrics.items()}
|
228 |
+
)
|
229 |
+
|
230 |
+
return result
|
231 |
+
|
232 |
|
233 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
234 |
class DiceCoefficient(evaluate.Metric):
|
|
|
|
|
235 |
def _info(self):
|
|
|
236 |
return evaluate.MetricInfo(
|
|
|
237 |
module_type="metric",
|
238 |
description=_DESCRIPTION,
|
239 |
citation=_CITATION,
|
240 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
241 |
features=datasets.Features({
|
242 |
'predictions': datasets.Value('int64'),
|
243 |
'references': datasets.Value('int64'),
|
244 |
}),
|
245 |
+
reference_urls=["https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/core/evaluation/metrics.py"]
|
|
|
|
|
|
|
|
|
246 |
)
|
247 |
|
248 |
+
def _compute(
|
249 |
+
self,
|
250 |
+
predictions,
|
251 |
+
references,
|
252 |
+
num_labels: int,
|
253 |
+
ignore_index: bool,
|
254 |
+
nan_to_num: Optional[int] = None,
|
255 |
+
label_map: Optional[Dict[int, int]] = None,
|
256 |
+
reduce_labels: bool = False,
|
257 |
+
):
|
258 |
+
dice = dice_coef(
|
259 |
+
results=predictions,
|
260 |
+
ground_truths=references,
|
261 |
+
num_labels=num_labels,
|
262 |
+
ignore_index=ignore_index,
|
263 |
+
nan_to_num=nan_to_num,
|
264 |
+
label_map=label_map,
|
265 |
+
reduce_labels=reduce_labels,
|
266 |
+
)
|
267 |
+
return dice
|