import librosa from transformers import Wav2Vec2ForCTC, AutoProcessor import torch import json from huggingface_hub import hf_hub_download from torchaudio.models.decoder import ctc_decoder ASR_SAMPLING_RATE = 16_000 ASR_LANGUAGES = {} with open(f"data/asr/all_langs.tsv") as f: for line in f: iso, name = line.split(" ", 1) ASR_LANGUAGES[iso] = name MODEL_ID = "facebook/mms-1b-all" processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) lm_decoding_config = {} lm_decoding_configfile = hf_hub_download( repo_id="facebook/mms-cclms", filename="decoding_config.json", subfolder="mms-1b-all", ) with open(lm_decoding_configfile) as f: lm_decoding_config = json.loads(f.read()) # allow language model decoding for "eng" decoding_config = lm_decoding_config["eng"] lm_file = hf_hub_download( repo_id="facebook/mms-cclms", filename=decoding_config["lmfile"].rsplit("/", 1)[1], subfolder=decoding_config["lmfile"].rsplit("/", 1)[0], ) token_file = hf_hub_download( repo_id="facebook/mms-cclms", filename=decoding_config["tokensfile"].rsplit("/", 1)[1], subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0], ) lexicon_file = None if decoding_config["lexiconfile"] is not None: lexicon_file = hf_hub_download( repo_id="facebook/mms-cclms", filename=decoding_config["lexiconfile"].rsplit("/", 1)[1], subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0], ) beam_search_decoder = ctc_decoder( lexicon=lexicon_file, tokens=token_file, lm=lm_file, nbest=1, beam_size=500, beam_size_token=50, lm_weight=float(decoding_config["lmweight"]), word_score=float(decoding_config["wordscore"]), sil_score=float(decoding_config["silweight"]), blank_token="", ) def transcribe( audio_source=None, microphone=None, file_upload=None, lang="eng (English)" ): if type(microphone) is dict: # HACK: microphone variable is a dict when running on examples microphone = microphone["name"] audio_fp = ( file_upload if "upload" in str(audio_source or "").lower() else microphone ) if audio_fp is None: return "ERROR: You have to either use the microphone or upload an audio file" audio_samples = librosa.load(audio_fp, sr=ASR_SAMPLING_RATE, mono=True)[0] lang_code = lang.split()[0] processor.tokenizer.set_target_lang(lang_code) model.load_adapter(lang_code) inputs = processor( audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt" ) # set device if torch.cuda.is_available(): device = torch.device("cuda") elif ( hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built() ): device = torch.device("mps") else: device = torch.device("cpu") model.to(device) inputs = inputs.to(device) with torch.no_grad(): outputs = model(**inputs).logits if lang_code != "eng": ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) else: beam_search_result = beam_search_decoder(outputs.to("cpu")) transcription = " ".join(beam_search_result[0][0].words).strip() return transcription ASR_EXAMPLES = [ [None, "assets/english.mp3", None, "eng (English)"], # [None, "assets/tamil.mp3", None, "tam (Tamil)"], # [None, "assets/burmese.mp3", None, "mya (Burmese)"], ] ASR_NOTE = """ The above demo uses beam-search decoding with LM for English and greedy decoding results for all other languages. Checkout the instructions [here](https://huggingface.co/facebook/mms-1b-all) on how to run LM decoding for other languages. """