import gradio as gr import torch from diffusers import AutoencoderKL, StableDiffusionXLPipeline,StableDiffusionPipeline pipe = StableDiffusionPipeline.from_single_file( "https://huggingface.co/ethe/Architecture_model/blob/main/architectureExterior_v40Exterior.safetensors", # "/mnt/pfs-guan-ssai/cv/panxuhao/checkpoints/stable-diffusion-xl-base-1.0/sd_xl_base_1.0.safetensors", torch_dtype=torch.float32, # local_files_only=True, variant="fp16", use_safetensors=True, ) num_images_per_prompt = 4 positive_prompt = 'Modern Elegance:Explore the seamless blend of sleek lines, minimalist aesthetics, and cutting-edge design in modern interior decor' negative_prompt = '(nsfw:1.3),(Nude:1.3),(Naked:1.3),low quality, blurry, bad anatomy, worst quality, text, watermark, normal quality, ugly, signature, lowres, deformed, disfigured, cropped, jpeg artifacts, error, \ mutation, logo, watermark,text, logo,contact, error, blurry, cropped, username, artist name, (worst quality, low quality:1.4),monochrome,' def inference(prompt,ref_image): prompt += positive_prompt image = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, # cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0), width=512, height=512, guidance_scale=7.0, use_karras_sigmas=True, num_images_per_prompt=num_images_per_prompt, # 如果是 4, image 就是四张图片组成的 List ).images return image with gr.Row(): input_prompt = gr.Textbox(placeholder="输入你对室内设计的要求,以便 AI 能够更好地满足你的需求。", label="要求") with gr.Row(): ref_image = gr.Image(height=512, width=512, label="参考图片") result_image = gr.Gallery(label="可能满足你需求的室内设计图:", columns=3, height="auto", object_fit="contain") demo = gr.Interface( fn=inference, inputs=[input_prompt,ref_image], outputs=[result_image] ) demo.launch()