File size: 2,537 Bytes
afa894f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ca877
afa894f
13ca877
afa894f
 
 
 
 
 
 
 
 
13ca877
afa894f
 
 
 
 
 
 
13ca877
afa894f
 
 
 
 
a8714db
baa1bf1
ab3de06
 
 
 
 
afa894f
13ca877
ab3de06
 
 
13ca877
 
afa894f
 
 
 
 
 
 
13ca877
 
 
 
 
 
 
 
afa894f
 
13ca877
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import math
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
# Add more imports if required

# Sample Transformation function
# YOUR CODE HERE for changing the Transformation values.
trnscm = transforms.Compose([transforms.Resize((100,100)), transforms.ToTensor()])

##Example Network
class Siamese(torch.nn.Module):
    def __init__(self):
        super(Siamese, self).__init__()
        #YOUR CODE HERE
        self.cnn1 = nn.Sequential(
            nn.ReflectionPad2d(1),       #Pads the input tensor using the reflection of the input boundary, it similar to the padding.
            nn.Conv2d(1, 4, kernel_size=3),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(4),

            nn.ReflectionPad2d(1),
            nn.Conv2d(4, 8, kernel_size=3),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(8),


            nn.ReflectionPad2d(1),
            nn.Conv2d(8, 8, kernel_size=3),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(8),
        )

        self.fc1 = nn.Sequential(
            nn.Linear(8*100*100, 500),
            nn.ReLU(inplace=True),

            nn.Linear(500, 500),
            nn.ReLU(inplace=True),

            nn.Linear(500, 5))
        
    def forward_once(self, x):
        output = self.cnn1(x)
        output = output.view(output.size()[0], -1)
        output = self.fc1(output)
        return output

    def forward(self, input1, input2):
        output1 = self.forward_once(input1)
        output2 = self.forward_once(input2)
        return output1, output2


        
##########################################################################################################
## Sample classification network (Specify if you are using a pytorch classifier during the training)    ##
## classifier = nn.Sequential(nn.Linear(64, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear...)           ##
##########################################################################################################

# YOUR CODE HERE for pytorch classifier
num_of_classes = 6
classifier = nn.Sequential(nn.Linear(256, 64),
                           nn.BatchNorm1d(64),
                           nn.ReLU(),
                           nn.Linear(64, 32),
                           nn.BatchNorm1d(32),
                           nn.ReLU(),
                           nn.Linear(32, num_of_classes))

# Definition of classes as dictionary
classes = ['person1','person2','person3','person4','person5','person6']