FaceSimilarity / app /Hackathon_setup /face_recognition.py
Pallavi Bhoj
Update face_recognition.py
c7bae90
from . import face_recognition_model
import numpy as np
import cv2
from matplotlib import pyplot as plt
import torch
# In the below line,remove '.' while working on your local system. However Make sure that '.' is present before face_recognition_model while uploading to the server, Do not remove it.
from .face_recognition_model import *
from PIL import Image
import base64
import io
import os
import joblib
import pickle
from joblib import load
# Add more imports if required
###########################################################################################################################################
# Caution: Don't change any of the filenames, function names and definitions #
# Always use the current_path + file_name for refering any files, without it we cannot access files on the server #
###########################################################################################################################################
# Current_path stores absolute path of the file from where it runs.
current_path = os.path.dirname(os.path.abspath(__file__))
#1) The below function is used to detect faces in the given image.
#2) It returns only one image which has maximum area out of all the detected faces in the photo.
#3) If no face is detected,then it returns zero(0).
def detected_face(image):
eye_haar = current_path + '/haarcascade_eye.xml'
face_haar = current_path + '/haarcascade_frontalface_default.xml'
face_cascade = cv2.CascadeClassifier(face_haar)
eye_cascade = cv2.CascadeClassifier(eye_haar)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
face_areas=[]
images = []
required_image=0
for i, (x,y,w,h) in enumerate(faces):
face_cropped = gray[y:y+h, x:x+w]
face_areas.append(w*h)
images.append(face_cropped)
required_image = images[np.argmax(face_areas)]
required_image = Image.fromarray(required_image)
return required_image
#1) Images captured from mobile is passed as parameter to the below function in the API call. It returns the similarity measure between given images.
#2) The image is passed to the function in base64 encoding, Code for decoding the image is provided within the function.
#3) Define an object to your siamese network here in the function and load the weight from the trained network, set it in evaluation mode.
#4) Get the features for both the faces from the network and return the similarity measure, Euclidean,cosine etc can be it. But choose the Relevant measure.
#5) For loading your model use the current_path+'your model file name', anyhow detailed example is given in comments to the function
#Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function
def get_similarity(img1, img2):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
det_img1 = detected_face(img1)
det_img2 = detected_face(img2)
if(det_img1 == 0 or det_img2 == 0):
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
det_img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY))
face1 = trnscm(det_img1).unsqueeze(0)
face2 = trnscm(det_img2).unsqueeze(0)
##########################################################################################
##Example for loading a model using weight state dictionary: ##
## feature_net = light_cnn() #Example Network ##
## model = torch.load(current_path + '/siamese_model.t7', map_location=device) ##
## feature_net.load_state_dict(model['net_dict']) ##
## ##
##current_path + '/<network_definition>' is path of the saved model if present in ##
##the same path as this file, we recommend to put in the same directory ##
##########################################################################################
##########################################################################################
feature_net = Siamese()
ckpt = torch.load(current_path + '/siamese_model.t7', map_location=device)
# model_path = current_path + "/Hackathon-setup/siamese_model.t7"
feature_net.load_state_dict(ckpt['net_dict'])
# model.eval()
with torch.no_grad():
output1, output2 = feature_net(face1.to(device), face2.to(device))
# Calculate similarity measure - for instance, using cosine similarity
euclidean_distance = F.pairwise_distance(output1, output2)
return euclidean_distance.item()
# ckpt = torch.load(current_path + "/Hackathon-setup/siamese_model.t7", map_location=device)
# # YOUR CODE HERE, load the model
# similarity_measure = ckpt(face1.to(device), face2.to(device))
# # YOUR CODE HERE, return similarity measure using your model
# return similarity_measure
# Load the Siamese network model
#1) Image captured from mobile is passed as parameter to this function in the API call, It returns the face class in the string form ex: "Person1"
#2) The image is passed to the function in base64 encoding, Code to decode the image provided within the function
#3) Define an object to your network here in the function and load the weight from the trained network, set it in evaluation mode
#4) Perform necessary transformations to the input(detected face using the above function).
#5) Along with the siamese, you need the classifier as well, which is to be finetuned with the faces that you are training
##Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function
def get_face_class(img1):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
det_img1 = detected_face(img1)
if(det_img1 == 0):
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
##YOUR CODE HERE, return face class here
##Hint: you need a classifier finetuned for your classes, it takes o/p of siamese as i/p to it
##Better Hint: Siamese experiment is covered in one of the labs
face1 = trnscm(det_img1).unsqueeze(0)
feature_net = Siamese().to(device)
model = torch.load(current_path + '/siamese_model.t7', map_location=device) ##
feature_net.load_state_dict(model['net_dict'])
feature_net.eval()
output1, output2 = feature_net(face1.to(device), face1.to(device))
output1 = output1.detach().numpy()
clf_model = load(current_path + '/clf_model.joblib')
label = clf_model.predict(output1)
return label