import torch import torchvision import torch.nn as nn from torchvision import transforms import torch.nn.functional as F ## Add more imports if required #################################################################################################################### # Define your model and transform and all necessary helper functions here # # They will be imported to the exp_recognition.py file # #################################################################################################################### # Definition of classes as dictionary classes = {0: 'ANGER', 1: 'DISGUST', 2: 'FEAR', 3: 'HAPPINESS', 4: 'NEUTRAL', 5: 'SADNESS', 6: 'SURPRISE'} # Example Network class facExpRec(torch.nn.Module): def __init__(self): super(facExpRec, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3) self.conv2 = nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3) self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3) self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=1) self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=1) self.conv6 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1) self.fc1 = nn.Linear(1024 * 1 * 1, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 64) self.fc4 = nn.Linear(64, 7) self.pool = nn.MaxPool2d(kernel_size=2) def forward(self, x): x = self.pool(F.elu(self.conv1(x))) x = self.pool(F.elu(self.conv2(x))) x = self.pool(F.elu(self.conv3(x))) x = self.pool(F.elu(self.conv4(x))) x = self.pool(F.elu(self.conv5(x))) x = self.pool(F.elu(self.conv6(x))) x = x.view(-1, 1024 * 1 * 1) x = F.elu(self.fc1(x)) x = F.elu(self.fc2(x)) x = F.elu(self.fc3(x)) x = self.fc4(x) x = F.log_softmax(x, dim=1) return x # Sample Helper function def rgb2gray(image): return image.convert('L') # Sample Transformation function #YOUR CODE HERE for changing the Transformation values. trnscm = transforms.Compose([rgb2gray, transforms.Resize((100,100)), transforms.ToTensor()])