import math import torch import torchvision import torch.nn as nn import torch.nn.functional as F from torchvision import transforms # Add more imports if required # Sample Transformation function # YOUR CODE HERE for changing the Transformation values. trnscm = transforms.Compose([transforms.Resize((100,100)), transforms.ToTensor()]) ##Example Network class Siamese(torch.nn.Module): def __init__(self): super(Siamese, self).__init__() #YOUR CODE HERE self.cnn1 = nn.Sequential( nn.ReflectionPad2d(1), #Pads the input tensor using the reflection of the input boundary, it similar to the padding. nn.Conv2d(1, 4, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(4), nn.ReflectionPad2d(1), nn.Conv2d(4, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), nn.ReflectionPad2d(1), nn.Conv2d(8, 8, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(8), ) self.fc1 = nn.Sequential( nn.Linear(8*100*100, 500), nn.ReLU(inplace=True), nn.Linear(500, 500), nn.ReLU(inplace=True), nn.Linear(500, 5)) def forward_once(self, x): output = self.cnn1(x) output = output.view(output.size()[0], -1) output = self.fc1(output) return output def forward(self, input1, input2): output1 = self.forward_once(input1) output2 = self.forward_once(input2) return output1, output2 ########################################################################################################## ## Sample classification network (Specify if you are using a pytorch classifier during the training) ## ## classifier = nn.Sequential(nn.Linear(64, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear...) ## ########################################################################################################## # YOUR CODE HERE for pytorch classifier num_of_classes = 6 classifier = nn.Sequential(nn.Linear(256, 64), nn.BatchNorm1d(64), nn.ReLU(), nn.Linear(64, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32, num_of_classes)) # Definition of classes as dictionary classes = ['person1','person2','person3','person4','person5','person6']