import numpy as np import cv2 from matplotlib import pyplot as plt import torch # In the below line,remove '.' while working on your local system.However Make sure that '.' is present before face_recognition_model while uploading to the server, Do not remove it. from .exp_recognition_model import * from PIL import Image import base64 import io import os import pdb ## Add more imports if required ############################################################################################################################# # Caution: Don't change any of the filenames, function names and definitions # # Always use the current_path + file_name for refering any files, without it we cannot access files on the server # ############################################################################################################################# # Current_path stores absolute path of the file from where it runs. current_path = os.path.dirname(os.path.abspath(__file__)) #1) The below function is used to detect faces in the given image. #2) It returns only one image which has maximum area out of all the detected faces in the photo. #3) If no face is detected,then it returns zero(0). def detected_face(image): eye_haar = current_path + '/haarcascade_eye.xml' face_haar = current_path + '/haarcascade_frontalface_default.xml' face_cascade = cv2.CascadeClassifier(face_haar) eye_cascade = cv2.CascadeClassifier(eye_haar) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) face_areas=[] images = [] required_image=0 for i, (x,y,w,h) in enumerate(faces): face_cropped = gray[y:y+h, x:x+w] face_areas.append(w*h) images.append(face_cropped) required_image = images[np.argmax(face_areas)] required_image = Image.fromarray(required_image) return required_image #1) Images captured from mobile is passed as parameter to the below function in the API call, It returns the Expression detected by your network. #2) The image is passed to the function in base64 encoding, Code for decoding the image is provided within the function. #3) Define an object to your network here in the function and load the weight from the trained network, set it in evaluation mode. #4) Perform necessary transformations to the input(detected face using the above function), this should return the Expression in string form ex: "Anger" #5) For loading your model use the current_path+'your model file name', anyhow detailed example is given in comments to the function ##Caution: Don't change the definition or function name; for loading the model use the current_path for path example is given in comments to the function def get_expression(img): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ########################################################################################## ##Example for loading a model using weight state dictionary: ## ## face_det_net = facExpRec() #Example Network ## ## model = torch.load(current_path + '/exp_recognition_net.t7', map_location=device) ## ## face_det_net.load_state_dict(model['net_dict']) ## ## ## ##current_path + '/' is path of the saved model if present in ## ##the same path as this file, we recommend to put in the same directory ## ########################################################################################## ########################################################################################## face_det_net = facExpRec() model = torch.load(current_path + '/face_expression.t7', map_location=device) face_det_net.load_state_dict(model['net_dict']) face = detected_face(img) if face == 0: face = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)) with torch.no_grad(): face = trnscm(face) output = face_det_net(face) _, predicted = torch.max(output, 1) predicted_expression = classes[predicted.item()] # YOUR CODE HERE, return expression using your model return predicted_expression