File size: 5,546 Bytes
b559e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import pathlib
import cv2
import pandas as pd
import copy
import os
import logging

class OpenImagesDataset:

    def __init__(self, root,

                 transform=None, target_transform=None,

                 dataset_type="train", balance_data=False):
        self.root = pathlib.Path(root)
        self.transform = transform
        self.target_transform = target_transform
        self.dataset_type = dataset_type.lower()

        self.data, self.class_names, self.class_dict = self._read_data()
        self.balance_data = balance_data
        self.min_image_num = -1
        if self.balance_data:
            self.data = self._balance_data()
        self.ids = [info['image_id'] for info in self.data]

        self.class_stat = None

    def _getitem(self, index):
        image_info = self.data[index]
        image = self._read_image(image_info['image_id'])
        # duplicate boxes to prevent corruption of dataset
        boxes = copy.copy(image_info['boxes'])
        boxes[:, 0] *= image.shape[1]
        boxes[:, 1] *= image.shape[0]
        boxes[:, 2] *= image.shape[1]
        boxes[:, 3] *= image.shape[0]
        # duplicate labels to prevent corruption of dataset
        labels = copy.copy(image_info['labels'])
        if self.transform:
            image, boxes, labels = self.transform(image, boxes, labels)
        if self.target_transform:
            boxes, labels = self.target_transform(boxes, labels)
        return image_info['image_id'], image, boxes, labels

    def __getitem__(self, index):
        _, image, boxes, labels = self._getitem(index)
        return image, boxes, labels

    def get_annotation(self, index):
        """To conform the eval_ssd implementation that is based on the VOC dataset."""
        image_id, image, boxes, labels = self._getitem(index)
        is_difficult = np.zeros(boxes.shape[0], dtype=np.uint8)
        return image_id, (boxes, labels, is_difficult)

    def get_image(self, index):
        image_info = self.data[index]
        image = self._read_image(image_info['image_id'])
        if self.transform:
            image, _ = self.transform(image)
        return image

    def _read_data(self):
        annotation_file = f"{self.root}/sub-{self.dataset_type}-annotations-bbox.csv"
        logging.info(f'loading annotations from: {annotation_file}')
        annotations = pd.read_csv(annotation_file)
        logging.info(f'annotations loaded from:  {annotation_file}')
        class_names = ['BACKGROUND'] + sorted(list(annotations['ClassName'].unique()))
        class_dict = {class_name: i for i, class_name in enumerate(class_names)}
        data = []
        for image_id, group in annotations.groupby("ImageID"):
            img_path = os.path.join(self.root, self.dataset_type, image_id + '.jpg')
            if os.path.isfile(img_path) is False:
                 logging.error(f'missing ImageID {image_id}.jpg - dropping from annotations')
                 continue
            boxes = group.loc[:, ["XMin", "YMin", "XMax", "YMax"]].values.astype(np.float32)
            # make labels 64 bits to satisfy the cross_entropy function
            labels = np.array([class_dict[name] for name in group["ClassName"]], dtype='int64')
            #print('found image {:s}  ({:d})'.format(img_path, len(data)))
            data.append({
                'image_id': image_id,
                'boxes': boxes,
                'labels': labels
            })
        print('num images:  {:d}'.format(len(data)))
        return data, class_names, class_dict

    def __len__(self):
        return len(self.data)

    def __repr__(self):
        if self.class_stat is None:
            self.class_stat = {name: 0 for name in self.class_names[1:]}
            for example in self.data:
                for class_index in example['labels']:
                    class_name = self.class_names[class_index]
                    self.class_stat[class_name] += 1
        content = ["Dataset Summary:"
                   f"Number of Images: {len(self.data)}",
                   f"Minimum Number of Images for a Class: {self.min_image_num}",
                   "Label Distribution:"]
        for class_name, num in self.class_stat.items():
            content.append(f"\t{class_name}: {num}")
        return "\n".join(content)

    def _read_image(self, image_id):
        image_file = self.root / self.dataset_type / f"{image_id}.jpg"
        image = cv2.imread(str(image_file))
        if image.shape[2] == 1:
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
        else:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        return image

    def _balance_data(self):
        logging.info('balancing data')
        label_image_indexes = [set() for _ in range(len(self.class_names))]
        for i, image in enumerate(self.data):
            for label_id in image['labels']:
                label_image_indexes[label_id].add(i)
        label_stat = [len(s) for s in label_image_indexes]
        self.min_image_num = min(label_stat[1:])
        sample_image_indexes = set()
        for image_indexes in label_image_indexes[1:]:
            image_indexes = np.array(list(image_indexes))
            sub = np.random.permutation(image_indexes)[:self.min_image_num]
            sample_image_indexes.update(sub)
        sample_data = [self.data[i] for i in sample_image_indexes]
        return sample_data