File size: 6,779 Bytes
b559e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch.nn as nn
import math

# Modified from https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/MobileNetV2.py.
# In this version, Relu6 is replaced with Relu to make it ONNX compatible.
# BatchNorm Layer is optional to make it easy do batch norm confusion.


def conv_bn(inp, oup, stride, use_batch_norm=True, onnx_compatible=False):
    ReLU = nn.ReLU if onnx_compatible else nn.ReLU6

    if use_batch_norm:
        return nn.Sequential(
            nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
            nn.BatchNorm2d(oup),
            ReLU(inplace=True)
        )
    else:
        return nn.Sequential(
            nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
            ReLU(inplace=True)
        )


def conv_1x1_bn(inp, oup, use_batch_norm=True, onnx_compatible=False):
    ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
    if use_batch_norm:
        return nn.Sequential(
            nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oup),
            ReLU(inplace=True)
        )
    else:
        return nn.Sequential(
            nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
            ReLU(inplace=True)
        )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio, use_batch_norm=True, onnx_compatible=False):
        super(InvertedResidual, self).__init__()
        ReLU = nn.ReLU if onnx_compatible else nn.ReLU6

        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expand_ratio == 1:
            if use_batch_norm:
                self.conv = nn.Sequential(
                    # dw
                    nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                    nn.BatchNorm2d(hidden_dim),
                    ReLU(inplace=True),
                    # pw-linear
                    nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                    nn.BatchNorm2d(oup),
                )
            else:
                self.conv = nn.Sequential(
                    # dw
                    nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                    ReLU(inplace=True),
                    # pw-linear
                    nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                )
        else:
            if use_batch_norm:
                self.conv = nn.Sequential(
                    # pw
                    nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                    nn.BatchNorm2d(hidden_dim),
                    ReLU(inplace=True),
                    # dw
                    nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                    nn.BatchNorm2d(hidden_dim),
                    ReLU(inplace=True),
                    # pw-linear
                    nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                    nn.BatchNorm2d(oup),
                )
            else:
                self.conv = nn.Sequential(
                    # pw
                    nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                    ReLU(inplace=True),
                    # dw
                    nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                    ReLU(inplace=True),
                    # pw-linear
                    nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, n_class=1000, input_size=224, width_mult=1., dropout_ratio=0.2,

                 use_batch_norm=True, onnx_compatible=False):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [6, 24, 2, 2],
            [6, 32, 3, 2],
            [6, 64, 4, 2],
            [6, 96, 3, 1],
            [6, 160, 3, 2],
            [6, 320, 1, 1],
        ]

        # building first layer
        assert input_size % 32 == 0
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        self.features = [conv_bn(3, input_channel, 2, onnx_compatible=onnx_compatible)]
        # building inverted residual blocks
        for t, c, n, s in interverted_residual_setting:
            output_channel = int(c * width_mult)
            for i in range(n):
                if i == 0:
                    self.features.append(block(input_channel, output_channel, s,
                                               expand_ratio=t, use_batch_norm=use_batch_norm,
                                               onnx_compatible=onnx_compatible))
                else:
                    self.features.append(block(input_channel, output_channel, 1,
                                               expand_ratio=t, use_batch_norm=use_batch_norm,
                                               onnx_compatible=onnx_compatible))
                input_channel = output_channel
        # building last several layers
        self.features.append(conv_1x1_bn(input_channel, self.last_channel,
                                         use_batch_norm=use_batch_norm, onnx_compatible=onnx_compatible))
        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(dropout_ratio),
            nn.Linear(self.last_channel, n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = x.mean(3).mean(2)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()