|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.init as init
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
|
|
__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']
|
|
|
|
|
|
model_urls = {
|
|
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
|
|
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
|
|
}
|
|
|
|
|
|
class Fire(nn.Module):
|
|
|
|
def __init__(self, inplanes, squeeze_planes,
|
|
expand1x1_planes, expand3x3_planes):
|
|
super(Fire, self).__init__()
|
|
self.inplanes = inplanes
|
|
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
|
|
self.squeeze_activation = nn.ReLU(inplace=True)
|
|
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
|
|
kernel_size=1)
|
|
self.expand1x1_activation = nn.ReLU(inplace=True)
|
|
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
|
|
kernel_size=3, padding=1)
|
|
self.expand3x3_activation = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.squeeze_activation(self.squeeze(x))
|
|
return torch.cat([
|
|
self.expand1x1_activation(self.expand1x1(x)),
|
|
self.expand3x3_activation(self.expand3x3(x))
|
|
], 1)
|
|
|
|
|
|
class SqueezeNet(nn.Module):
|
|
|
|
def __init__(self, version=1.0, num_classes=1000):
|
|
super(SqueezeNet, self).__init__()
|
|
if version not in [1.0, 1.1]:
|
|
raise ValueError("Unsupported SqueezeNet version {version}:"
|
|
"1.0 or 1.1 expected".format(version=version))
|
|
self.num_classes = num_classes
|
|
if version == 1.0:
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(3, 96, kernel_size=7, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
|
Fire(96, 16, 64, 64),
|
|
Fire(128, 16, 64, 64),
|
|
Fire(128, 32, 128, 128),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
|
Fire(256, 32, 128, 128),
|
|
Fire(256, 48, 192, 192),
|
|
Fire(384, 48, 192, 192),
|
|
Fire(384, 64, 256, 256),
|
|
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
|
Fire(512, 64, 256, 256),
|
|
)
|
|
else:
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(3, 64, kernel_size=3, stride=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
Fire(64, 16, 64, 64),
|
|
Fire(128, 16, 64, 64),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
Fire(128, 32, 128, 128),
|
|
Fire(256, 32, 128, 128),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
Fire(256, 48, 192, 192),
|
|
Fire(384, 48, 192, 192),
|
|
Fire(384, 64, 256, 256),
|
|
Fire(512, 64, 256, 256),
|
|
)
|
|
|
|
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(p=0.5),
|
|
final_conv,
|
|
nn.ReLU(inplace=True),
|
|
nn.AvgPool2d(13, stride=1)
|
|
)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
if m is final_conv:
|
|
init.normal_(m.weight, mean=0.0, std=0.01)
|
|
else:
|
|
init.kaiming_uniform_(m.weight)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = self.classifier(x)
|
|
return x.view(x.size(0), self.num_classes)
|
|
|
|
|
|
def squeezenet1_0(pretrained=False, **kwargs):
|
|
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
|
|
accuracy with 50x fewer parameters and <0.5MB model size"
|
|
<https://arxiv.org/abs/1602.07360>`_ paper.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = SqueezeNet(version=1.0, **kwargs)
|
|
if pretrained:
|
|
model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_0']))
|
|
return model
|
|
|
|
|
|
def squeezenet1_1(pretrained=False, **kwargs):
|
|
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
|
|
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
|
|
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
|
|
than SqueezeNet 1.0, without sacrificing accuracy.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
"""
|
|
model = SqueezeNet(version=1.1, **kwargs)
|
|
if pretrained:
|
|
model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_1']))
|
|
return model
|
|
|