fa0311 commited on
Commit
c025c60
·
verified ·
1 Parent(s): b559e06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -58
app.py CHANGED
@@ -1,58 +1,58 @@
1
- import cv2
2
- import gradio as gr
3
- from huggingface_hub import hf_hub_download
4
-
5
- from vision.ssd.mobilenet_v2_ssd_lite import (
6
- create_mobilenetv2_ssd_lite,
7
- create_mobilenetv2_ssd_lite_predictor,
8
- )
9
-
10
- MODEL_REPO = "fa0311/oita-ken-strawberries-mobilenet"
11
- MODEL_FILENAME = "20250129_053504/mb2-ssd-lite-Epoch-55-Loss-1.508891262114048.pth"
12
- LABELS_FILENAME = "20250129_053504/labels.txt"
13
-
14
- model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
15
- label_path = hf_hub_download(repo_id=MODEL_REPO, filename=LABELS_FILENAME)
16
-
17
- with open(label_path, "r") as f:
18
- class_names = [name.strip() for name in f.readlines()]
19
-
20
- net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
21
- net.load(model_path)
22
- predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200)
23
-
24
-
25
- def detect_objects(image, threshold):
26
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
27
- boxes, labels, probs = predictor.predict(image, 10, threshold)
28
-
29
- for i in range(boxes.size(0)):
30
- box = list(map(int, boxes[i, :]))
31
- cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
32
- label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
33
- cv2.putText(
34
- image,
35
- label,
36
- (box[0] + 10, box[1] + 25),
37
- cv2.FONT_HERSHEY_SIMPLEX,
38
- 0.8,
39
- (255, 0, 255),
40
- 2,
41
- )
42
-
43
- return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
44
-
45
-
46
- iface = gr.Interface(
47
- fn=detect_objects,
48
- inputs=[
49
- gr.Image(type="numpy"),
50
- gr.Slider(0.1, 1.0, value=0.7, label="Detection Threshold"),
51
- ],
52
- outputs=gr.Image(type="numpy"),
53
- title="SSD Object Detection",
54
- description="Upload an image of strawberries to detect objects using MobileNetV2-SSD-Lite.",
55
- )
56
-
57
- if __name__ == "__main__":
58
- iface.launch()
 
1
+ import cv2
2
+ import gradio as gr
3
+ from huggingface_hub import hf_hub_download
4
+
5
+ from vision.ssd.mobilenet_v2_ssd_lite import (
6
+ create_mobilenetv2_ssd_lite,
7
+ create_mobilenetv2_ssd_lite_predictor,
8
+ )
9
+
10
+ MODEL_REPO = "fa0311/oita-ken-strawberries-mobilenet"
11
+ MODEL_FILENAME = "20250129_053504/mb2-ssd-lite-Epoch-55-Loss-1.508891262114048.pth"
12
+ LABELS_FILENAME = "20250129_053504/labels.txt"
13
+
14
+ model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
15
+ label_path = hf_hub_download(repo_id=MODEL_REPO, filename=LABELS_FILENAME)
16
+
17
+ with open(label_path, "r") as f:
18
+ class_names = [name.strip() for name in f.readlines()]
19
+
20
+ net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
21
+ net.load(model_path)
22
+ predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200)
23
+
24
+
25
+ def detect_objects(image, threshold):
26
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
27
+ boxes, labels, probs = predictor.predict(image, 10, threshold)
28
+
29
+ for i in range(boxes.size(0)):
30
+ box = list(map(int, boxes[i, :]))
31
+ cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
32
+ label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
33
+ cv2.putText(
34
+ image,
35
+ label,
36
+ (box[0] + 10, box[1] + 25),
37
+ cv2.FONT_HERSHEY_SIMPLEX,
38
+ 0.8,
39
+ (255, 0, 255),
40
+ 2,
41
+ )
42
+
43
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
44
+
45
+
46
+ iface = gr.Interface(
47
+ fn=detect_objects,
48
+ inputs=[
49
+ gr.Image(type="numpy"),
50
+ gr.Slider(0.1, 1.0, value=0.7, label="Detection Threshold"),
51
+ ],
52
+ outputs=gr.Image(type="numpy"),
53
+ title="SSD Object Detection - Strawberry quality classification",
54
+ description="Upload an image of strawberries to detect objects using MobileNetV2-SSD-Lite.",
55
+ )
56
+
57
+ if __name__ == "__main__":
58
+ iface.launch()