File size: 7,809 Bytes
2d522b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e82d74
 
 
 
 
 
 
 
2d522b6
 
8e82d74
 
2d522b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e82d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d522b6
 
 
8e82d74
2d522b6
 
8e82d74
 
 
 
2d522b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e82d74
 
 
 
2d522b6
 
 
 
 
 
 
 
 
8e82d74
 
 
2d522b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from fairseq2.assets.card import AssetCard
from fairseq2.data import Collater
from fairseq2.data.audio import AudioDecoder, WaveformToFbankConverter
from fairseq2.data.text.text_tokenizer import TextTokenizer
from fairseq2.data.typing import StringLike
from fairseq2.generation import SequenceToTextOutput, SequenceGeneratorOptions
from fairseq2.memory import MemoryBlock
from fairseq2.typing import DataType, Device
from torch import Tensor
from enum import Enum, auto
from seamless_communication.models.inference.ngram_repeat_block_processor import (
    NGramRepeatBlockProcessor,
)

from seamless_communication.models.unity import (
    UnitTokenizer,
    UnitYGenerator,
    UnitYModel,
    load_unity_model,
    load_unity_text_tokenizer,
    load_unity_unit_tokenizer,
)
from seamless_communication.models.unity.generator import SequenceToUnitOutput
from seamless_communication.models.vocoder import load_vocoder_model, Vocoder



# from seamless_communication.models.streaming.agents import (
#     SileroVADAgent,
#     TestTimeWaitKS2TVAD,
#     TestTimeWaitKUnityV1M4T
# )

from seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t import (
    TestTimeWaitKUnityS2TM4T,
)

from seamless_communication.cli.streaming.dataloader import Fairseq2SpeechToTextDataloader

### From test_pipeline
import math
import soundfile
from argparse import Namespace, ArgumentParser
from simuleval.data.segments import SpeechSegment, EmptySegment
from simuleval.utils import build_system_from_dir
from pathlib import Path
import numpy as np

class AudioFrontEnd:
    def __init__(self, wav_file, segment_size) -> None:
        self.samples, self.sample_rate = soundfile.read(wav_file)
        # print(len(self.samples), self.samples[:100])
        self.samples = self.samples.tolist()
        self.segment_size = segment_size
        self.step = 0
    def send_segment(self):
        """
        This is the front-end logic in simuleval instance.py
        """
        num_samples = math.ceil(self.segment_size / 1000 * self.sample_rate)
        print("self.segment_size", self.segment_size)
        print('num_samples is', num_samples)
        print('self.sample_rate is', self.sample_rate)
        if self.step < len(self.samples):
            if self.step + num_samples >= len(self.samples):
                samples = self.samples[self.step :]
                is_finished = True
            else:
                samples = self.samples[self.step : self.step + num_samples]
                is_finished = False
            self.step = min(self.step + num_samples, len(self.samples))
            # print("len(samples) is", len(samples))
            # import pdb
            # pdb.set_trace()
            segment = SpeechSegment(
                index=self.step / self.sample_rate * 1000,
                content=samples,
                sample_rate=self.sample_rate,
                finished=is_finished,
            )
        else:
            # Finish reading this audio
            segment = EmptySegment(
                index=self.step / self.sample_rate * 1000,
                finished=True,
            )
        return segment



def load_model_for_inference(
    load_model_fn: Callable[..., nn.Module],
    model_name_or_card: Union[str, AssetCard],
    device: Device,
    dtype: DataType,
) -> nn.Module:
    model = load_model_fn(model_name_or_card, device=device, dtype=dtype)
    model.eval()
    return model

def load_model_fairseq2():
    data_configs = dict(
        dataloader="fairseq2_s2t",
        data_file="/large_experiments/seamless/ust/abinesh/data/s2st50_manifests/50-10/simuleval/dev_mtedx_filt_50-10_debug.tsv",
    )

    model_configs = dict(
        model_name="seamlessM4T_v2_large",
        device="cuda:0",
        source_segment_size=320,
        waitk_lagging=7,
        fixed_pre_decision_ratio=2,
        init_target_tokens="</s> __eng__",
        max_len_a=0,
        max_len_b=200,
        agent_class="seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t.TestTimeWaitKUnityS2TM4T",
        task="s2st",
        tgt_lang="eng",
    )

    eval_configs = dict(
        latency_metrics="StartOffset EndOffset AL",
        output=f"{TestTimeWaitKUnityS2TM4T.__name__}-wait{model_configs['waitk_lagging']}-debug",
    )

    model = TestTimeWaitKUnityS2TM4T({**data_configs, **model_configs, **eval_configs})
    print("model", model)

    evaluate(
        TestTimeWaitKUnityS2TM4T, {**data_configs, **model_configs, **eval_configs}
    )

class SimulevalTranscoder:
    # def __init__(self, agent, sample_rate, debug, buffer_limit):
    def __init__(self):
        # print("MDUPPES in here", SileroVADAgent, TestTimeWaitKS2TVAD)
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")



        load_model_fairseq2()

        device = "cpu"
        print("DEVICE", device)
        model_name_or_card="seamlessM4T_medium"
        vocoder_name_or_card="vocoder_36langs"
        # dtype=torch.float16,
        # For CPU Mode need to use 32, float16 causes errors downstream
        dtype=dtype=torch.float32

        model: UnitYModel = load_model_for_inference(
            load_unity_model, model_name_or_card, device, dtype
        )


        print(model, type(model))
        parser = ArgumentParser()
        source_segment_size = 320  # milliseconds
        audio_frontend = AudioFrontEnd(
            wav_file="/checkpoint/mduppes/samples/marta.wav",
            segment_size=source_segment_size,
        )

        # mostly taken from S2S first agent: OnlineFeatureExtractorAgent defaults
        SHIFT_SIZE = 10
        WINDOW_SIZE = 25
        SAMPLE_RATE = 16000
        FEATURE_DIM = 80

        # args and convert to namespace so it can be accesed via .
        args = {
            "shift_size": SHIFT_SIZE,
            "window_size": WINDOW_SIZE,
            "sample_rate": audio_frontend.sample_rate,
            "feature_dim": 160, # from Wav2Vec2Frontend
            "denormalize": False, # not sure..
            "global_stats": None, # default file path containing cmvn stats..
        }
        print(args)
        args = Namespace(**args)

        pipeline = TestTimeWaitKUnityV1M4T(model, args)
        system_states = pipeline.build_states()
        print('system states:')
        for state in system_states:
            print(state, vars(state))

        input_segment = np.empty(0, dtype=np.int16)
        segments = []
        while True:
            speech_segment = audio_frontend.send_segment()
            input_segment = np.concatenate((input_segment, np.array(speech_segment.content)))
            # Translation happens here
            output_segment = pipeline.pushpop(speech_segment, system_states)
            print('pushpop result')
            print(output_segment)
            print('system states after pushpop:')
            for state in system_states:
                print(state, vars(state))
            if output_segment.finished:
                segments.append(input_segment)
                input_segment = np.empty(0, dtype=np.int16)
                print("Resetting states")
                for state in system_states:
                    state.reset()
            if speech_segment.finished:
                break
        # The VAD-segmented samples from the full input audio
        for i, seg in enumerate(segments):
            with soundfile.SoundFile(
                Path("/checkpoint/mduppes/samples") / f"marta_{i}.wav",
                mode="w+",
                format="WAV",
                samplerate=16000,
                channels=1,
            ) as f:
                f.seek(0, soundfile.SEEK_END)
                f.write(seg)