Spaces:
Running
on
T4
Running
on
T4
File size: 7,809 Bytes
2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 8e82d74 2d522b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from fairseq2.assets.card import AssetCard
from fairseq2.data import Collater
from fairseq2.data.audio import AudioDecoder, WaveformToFbankConverter
from fairseq2.data.text.text_tokenizer import TextTokenizer
from fairseq2.data.typing import StringLike
from fairseq2.generation import SequenceToTextOutput, SequenceGeneratorOptions
from fairseq2.memory import MemoryBlock
from fairseq2.typing import DataType, Device
from torch import Tensor
from enum import Enum, auto
from seamless_communication.models.inference.ngram_repeat_block_processor import (
NGramRepeatBlockProcessor,
)
from seamless_communication.models.unity import (
UnitTokenizer,
UnitYGenerator,
UnitYModel,
load_unity_model,
load_unity_text_tokenizer,
load_unity_unit_tokenizer,
)
from seamless_communication.models.unity.generator import SequenceToUnitOutput
from seamless_communication.models.vocoder import load_vocoder_model, Vocoder
# from seamless_communication.models.streaming.agents import (
# SileroVADAgent,
# TestTimeWaitKS2TVAD,
# TestTimeWaitKUnityV1M4T
# )
from seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t import (
TestTimeWaitKUnityS2TM4T,
)
from seamless_communication.cli.streaming.dataloader import Fairseq2SpeechToTextDataloader
### From test_pipeline
import math
import soundfile
from argparse import Namespace, ArgumentParser
from simuleval.data.segments import SpeechSegment, EmptySegment
from simuleval.utils import build_system_from_dir
from pathlib import Path
import numpy as np
class AudioFrontEnd:
def __init__(self, wav_file, segment_size) -> None:
self.samples, self.sample_rate = soundfile.read(wav_file)
# print(len(self.samples), self.samples[:100])
self.samples = self.samples.tolist()
self.segment_size = segment_size
self.step = 0
def send_segment(self):
"""
This is the front-end logic in simuleval instance.py
"""
num_samples = math.ceil(self.segment_size / 1000 * self.sample_rate)
print("self.segment_size", self.segment_size)
print('num_samples is', num_samples)
print('self.sample_rate is', self.sample_rate)
if self.step < len(self.samples):
if self.step + num_samples >= len(self.samples):
samples = self.samples[self.step :]
is_finished = True
else:
samples = self.samples[self.step : self.step + num_samples]
is_finished = False
self.step = min(self.step + num_samples, len(self.samples))
# print("len(samples) is", len(samples))
# import pdb
# pdb.set_trace()
segment = SpeechSegment(
index=self.step / self.sample_rate * 1000,
content=samples,
sample_rate=self.sample_rate,
finished=is_finished,
)
else:
# Finish reading this audio
segment = EmptySegment(
index=self.step / self.sample_rate * 1000,
finished=True,
)
return segment
def load_model_for_inference(
load_model_fn: Callable[..., nn.Module],
model_name_or_card: Union[str, AssetCard],
device: Device,
dtype: DataType,
) -> nn.Module:
model = load_model_fn(model_name_or_card, device=device, dtype=dtype)
model.eval()
return model
def load_model_fairseq2():
data_configs = dict(
dataloader="fairseq2_s2t",
data_file="/large_experiments/seamless/ust/abinesh/data/s2st50_manifests/50-10/simuleval/dev_mtedx_filt_50-10_debug.tsv",
)
model_configs = dict(
model_name="seamlessM4T_v2_large",
device="cuda:0",
source_segment_size=320,
waitk_lagging=7,
fixed_pre_decision_ratio=2,
init_target_tokens="</s> __eng__",
max_len_a=0,
max_len_b=200,
agent_class="seamless_communication.cli.streaming.agents.tt_waitk_unity_s2t_m4t.TestTimeWaitKUnityS2TM4T",
task="s2st",
tgt_lang="eng",
)
eval_configs = dict(
latency_metrics="StartOffset EndOffset AL",
output=f"{TestTimeWaitKUnityS2TM4T.__name__}-wait{model_configs['waitk_lagging']}-debug",
)
model = TestTimeWaitKUnityS2TM4T({**data_configs, **model_configs, **eval_configs})
print("model", model)
evaluate(
TestTimeWaitKUnityS2TM4T, {**data_configs, **model_configs, **eval_configs}
)
class SimulevalTranscoder:
# def __init__(self, agent, sample_rate, debug, buffer_limit):
def __init__(self):
# print("MDUPPES in here", SileroVADAgent, TestTimeWaitKS2TVAD)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
load_model_fairseq2()
device = "cpu"
print("DEVICE", device)
model_name_or_card="seamlessM4T_medium"
vocoder_name_or_card="vocoder_36langs"
# dtype=torch.float16,
# For CPU Mode need to use 32, float16 causes errors downstream
dtype=dtype=torch.float32
model: UnitYModel = load_model_for_inference(
load_unity_model, model_name_or_card, device, dtype
)
print(model, type(model))
parser = ArgumentParser()
source_segment_size = 320 # milliseconds
audio_frontend = AudioFrontEnd(
wav_file="/checkpoint/mduppes/samples/marta.wav",
segment_size=source_segment_size,
)
# mostly taken from S2S first agent: OnlineFeatureExtractorAgent defaults
SHIFT_SIZE = 10
WINDOW_SIZE = 25
SAMPLE_RATE = 16000
FEATURE_DIM = 80
# args and convert to namespace so it can be accesed via .
args = {
"shift_size": SHIFT_SIZE,
"window_size": WINDOW_SIZE,
"sample_rate": audio_frontend.sample_rate,
"feature_dim": 160, # from Wav2Vec2Frontend
"denormalize": False, # not sure..
"global_stats": None, # default file path containing cmvn stats..
}
print(args)
args = Namespace(**args)
pipeline = TestTimeWaitKUnityV1M4T(model, args)
system_states = pipeline.build_states()
print('system states:')
for state in system_states:
print(state, vars(state))
input_segment = np.empty(0, dtype=np.int16)
segments = []
while True:
speech_segment = audio_frontend.send_segment()
input_segment = np.concatenate((input_segment, np.array(speech_segment.content)))
# Translation happens here
output_segment = pipeline.pushpop(speech_segment, system_states)
print('pushpop result')
print(output_segment)
print('system states after pushpop:')
for state in system_states:
print(state, vars(state))
if output_segment.finished:
segments.append(input_segment)
input_segment = np.empty(0, dtype=np.int16)
print("Resetting states")
for state in system_states:
state.reset()
if speech_segment.finished:
break
# The VAD-segmented samples from the full input audio
for i, seg in enumerate(segments):
with soundfile.SoundFile(
Path("/checkpoint/mduppes/samples") / f"marta_{i}.wav",
mode="w+",
format="WAV",
samplerate=16000,
channels=1,
) as f:
f.seek(0, soundfile.SEEK_END)
f.write(seg)
|