gmdnn commited on
Commit
3f873d4
·
1 Parent(s): 261aa8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -20
app.py CHANGED
@@ -1,13 +1,5 @@
1
  import os
2
- os.system("pip install gradio==3.3")
3
  import gradio as gr
4
- import numpy as np
5
-
6
- title = "SpeechMatrix Speech-to-speech Translation"
7
-
8
- description = "Gradio Demo for SpeechMatrix. To use it, simply record your audio, or click the example to load. Read more at the links below. \nNote: These models are trained on SpeechMatrix data only, and meant to serve as a baseline for future research."
9
-
10
- article = "<p style='text-align: center'><a href='https://research.facebook.com/publications/speechmatrix' target='_blank'>SpeechMatrix</a> | <a href='https://github.com/facebookresearch/fairseq/tree/ust' target='_blank'>Github Repo</a></p>"
11
 
12
  SRC_LIST = ['cs', 'de', 'en', 'es', 'et', 'fi', 'fr', 'hr', 'hu', 'it', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl']
13
  TGT_LIST = ['en', 'fr', 'es']
@@ -16,21 +8,17 @@ for src in SRC_LIST:
16
  for tgt in TGT_LIST:
17
  if src != tgt:
18
  MODEL_LIST.append(f"textless_sm_{src}_{tgt}")
19
-
20
  examples = []
21
 
22
- io_dict = {model: gr.Interface.load(f"huggingface/facebook/{model}", api_key=os.environ['api_key']) for model in MODEL_LIST}
23
-
24
  def inference(audio, model):
25
- out_audio = io_dict[model](audio)
26
- return out_audio
 
27
  gr.Interface(
28
  inference,
29
- [gr.inputs.Audio(source="microphone", type="filepath", label="Input"),gr.inputs.Dropdown(choices=MODEL_LIST, default="xm_transformer_sm_all-en",type="value", label="Model")
30
  ],
31
- gr.outputs.Audio(label="Output"),
32
- article=article,
33
- title=title,
34
- examples=examples,
35
- cache_examples=False,
36
- description=description).queue().launch()
 
1
  import os
 
2
  import gradio as gr
 
 
 
 
 
 
 
3
 
4
  SRC_LIST = ['cs', 'de', 'en', 'es', 'et', 'fi', 'fr', 'hr', 'hu', 'it', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl']
5
  TGT_LIST = ['en', 'fr', 'es']
 
8
  for tgt in TGT_LIST:
9
  if src != tgt:
10
  MODEL_LIST.append(f"textless_sm_{src}_{tgt}")
11
+
12
  examples = []
13
 
14
+ io_dict = {model: gr.load(f"huggingface/facebook/{model}") for model in MODEL_LIST}
15
+
16
  def inference(audio, model):
17
+ out_audio = io_dict[model](audio)
18
+ return out_audio
19
+
20
  gr.Interface(
21
  inference,
22
+ [gr.Audio(source="microphone", type="filepath", label="Input"),gr.Dropdown(choices=MODEL_LIST, type="value", label="Model")
23
  ],
24
+ gr.Audio(label="Output")).queue().launch()