Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,820 Bytes
34d287c dbccd94 34d287c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
import trimesh
import sys
import os
# sys.path.append('vggsfm_code/')
import shutil
from datetime import datetime
# from vggsfm_code.hf_demo import demo_fn
# from omegaconf import DictConfig, OmegaConf
# from viz_utils.viz_fn import add_camera
from scipy.spatial.transform import Rotation
import PIL
from scipy.spatial import cKDTree
def get_density_np(pcl, K=0.005):
if isinstance(K, float):
K = max(int(K * pcl.shape[0]), 1)
tree = cKDTree(pcl)
dists, _ = tree.query(pcl, k=K+1) # K+1 because the point itself is included
dists = dists[:, 1:] # Remove the zero distance to itself
D = np.sqrt(dists).sum(axis=1)
return D
def apply_density_filter_np(pts, feats=None, density_filter=0.9, density_K=100):
"""
:param pts: ndarray of shape (N, 3) representing the point cloud.
:param feats: ndarray of corresponding features for the point cloud.
:param density_filter: Float, the percentage of points to keep based on density.
:param density_K: Int, number of nearest neighbors to consider for density calculation.
:return: Filtered points and their corresponding features.
"""
# Calculate densities
D = get_density_np(pts, K=density_K)
# Apply the density filter
topk_k = max(int((1 - density_filter) * pts.shape[0]), 1)
val = np.partition(D, topk_k)[topk_k]
ok = (D <= val)
# Filter points and features
filtered_pts = pts[ok]
if feats is not None:
filtered_feats = feats[ok]
else:
filtered_feats = feats
return filtered_pts, filtered_feats
def add_camera(scene, pose_c2w, edge_color, image=None,
focal=None, imsize=None,
screen_width=0.03, marker=None):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py
opengl_mat = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
if image is not None:
image = np.asarray(image)
H, W, THREE = image.shape
assert THREE == 3
if image.dtype != np.uint8:
image = np.uint8(255*image)
elif imsize is not None:
W, H = imsize
elif focal is not None:
H = W = focal / 1.1
else:
H = W = 1
if isinstance(focal, np.ndarray):
focal = focal[0]
if not focal:
focal = min(H,W) * 1.1 # default value
# create fake camera
height = max( screen_width/10, focal * screen_width / H )
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
rot45[2, 3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0, 0] = W/H
transform = pose_c2w @ opengl_mat @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4) # , transform=transform)
# this is the image
if image is not None:
vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
vertices = geotrf(transform, vertices)
faces = []
for face in cam.faces:
if 0 in face:
continue
a, b, c = face
a2, b2, c2 = face + len(cam.vertices)
a3, b3, c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a, b, b2))
faces.append((a, a2, c))
faces.append((c2, b, c))
faces.append((a, b, b3))
faces.append((a, a3, c))
faces.append((c3, b, c))
# no culling
faces += [(c, b, a) for a, b, c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:, :3] = edge_color
scene.add_geometry(cam)
if marker == 'o':
marker = trimesh.creation.icosphere(3, radius=screen_width/4)
marker.vertices += pose_c2w[:3,3]
marker.visual.face_colors[:,:3] = edge_color
scene.add_geometry(marker)
def geotrf(Trf, pts, ncol=None, norm=False):
# learned from https://github.com/naver/dust3r/blob/main/dust3r/
assert Trf.ndim >= 2
pts = np.asarray(pts)
# adapt shape if necessary
output_reshape = pts.shape[:-1]
ncol = ncol or pts.shape[-1]
if Trf.ndim >= 3:
n = Trf.ndim - 2
assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
if pts.ndim > Trf.ndim:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
elif pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1] + 1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1, -2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2:
pts = pts.swapaxes(-1, -2)
if norm:
pts = pts / pts[..., -1:]
if norm != 1:
pts *= norm
res = pts[..., :ncol].reshape(*output_reshape, ncol)
return res
|