File size: 5,820 Bytes
34d287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbccd94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d287c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import cv2
import torch
import numpy as np
import gradio as gr

import trimesh
import sys
import os

# sys.path.append('vggsfm_code/')
import shutil
from datetime import datetime

# from vggsfm_code.hf_demo import demo_fn
# from omegaconf import DictConfig, OmegaConf
# from viz_utils.viz_fn import add_camera

from scipy.spatial.transform import Rotation
import PIL

from scipy.spatial import cKDTree



def get_density_np(pcl, K=0.005):
    if isinstance(K, float):
        K = max(int(K * pcl.shape[0]), 1)
    
    tree = cKDTree(pcl)
    dists, _ = tree.query(pcl, k=K+1)  # K+1 because the point itself is included
    
    dists = dists[:, 1:]  # Remove the zero distance to itself
    D = np.sqrt(dists).sum(axis=1)
    
    return D

def apply_density_filter_np(pts, feats=None, density_filter=0.9, density_K=100):
    """
    :param pts: ndarray of shape (N, 3) representing the point cloud.
    :param feats: ndarray of corresponding features for the point cloud.
    :param density_filter: Float, the percentage of points to keep based on density.
    :param density_K: Int, number of nearest neighbors to consider for density calculation.
    :return: Filtered points and their corresponding features.
    """
    # Calculate densities
    D = get_density_np(pts, K=density_K)

    # Apply the density filter
    topk_k = max(int((1 - density_filter) * pts.shape[0]), 1)
    val = np.partition(D, topk_k)[topk_k]
    ok = (D <= val)
    
    # Filter points and features
    filtered_pts = pts[ok]
    if feats is not None:
        filtered_feats = feats[ok]
    else:
        filtered_feats = feats
    return filtered_pts, filtered_feats


def add_camera(scene, pose_c2w, edge_color, image=None, 
                  focal=None, imsize=None, 
                  screen_width=0.03, marker=None):
    # learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py

    opengl_mat = np.array([[1, 0, 0, 0],
                    [0, -1, 0, 0],
                    [0, 0, -1, 0],
                    [0, 0, 0, 1]])

    if image is not None:
        image = np.asarray(image)
        H, W, THREE = image.shape
        assert THREE == 3
        if image.dtype != np.uint8:
            image = np.uint8(255*image)
    elif imsize is not None:
        W, H = imsize
    elif focal is not None:
        H = W = focal / 1.1
    else:
        H = W = 1


    if isinstance(focal, np.ndarray):
        focal = focal[0]
    if not focal:
        focal = min(H,W) * 1.1 # default value

    # create fake camera
    height = max( screen_width/10, focal * screen_width / H )
    width = screen_width * 0.5**0.5
    rot45 = np.eye(4)
    rot45[:3, :3] = Rotation.from_euler('z', np.deg2rad(45)).as_matrix()
    rot45[2, 3] = -height  # set the tip of the cone = optical center
    aspect_ratio = np.eye(4)
    aspect_ratio[0, 0] = W/H
    transform = pose_c2w @ opengl_mat @ aspect_ratio @ rot45
    cam = trimesh.creation.cone(width, height, sections=4)  # , transform=transform)

    # this is the image
    if image is not None:
        vertices = geotrf(transform, cam.vertices[[4, 5, 1, 3]])
        faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
        img = trimesh.Trimesh(vertices=vertices, faces=faces)
        uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
        img.visual = trimesh.visual.TextureVisuals(uv_coords, image=PIL.Image.fromarray(image))
        scene.add_geometry(img)

    # this is the camera mesh
    rot2 = np.eye(4)
    rot2[:3, :3] = Rotation.from_euler('z', np.deg2rad(2)).as_matrix()
    vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
    vertices = geotrf(transform, vertices)
    faces = []
    for face in cam.faces:
        if 0 in face:
            continue
        a, b, c = face
        a2, b2, c2 = face + len(cam.vertices)
        a3, b3, c3 = face + 2*len(cam.vertices)

        # add 3 pseudo-edges
        faces.append((a, b, b2))
        faces.append((a, a2, c))
        faces.append((c2, b, c))

        faces.append((a, b, b3))
        faces.append((a, a3, c))
        faces.append((c3, b, c))

    # no culling
    faces += [(c, b, a) for a, b, c in faces]

    cam = trimesh.Trimesh(vertices=vertices, faces=faces)
    cam.visual.face_colors[:, :3] = edge_color
    scene.add_geometry(cam)

    if marker == 'o':
        marker = trimesh.creation.icosphere(3, radius=screen_width/4)
        marker.vertices += pose_c2w[:3,3]
        marker.visual.face_colors[:,:3] = edge_color
        scene.add_geometry(marker)

def geotrf(Trf, pts, ncol=None, norm=False):
    # learned from https://github.com/naver/dust3r/blob/main/dust3r/

    assert Trf.ndim >= 2
    pts = np.asarray(pts)

    # adapt shape if necessary
    output_reshape = pts.shape[:-1]
    ncol = ncol or pts.shape[-1]

    if Trf.ndim >= 3:
        n = Trf.ndim - 2
        assert Trf.shape[:n] == pts.shape[:n], 'batch size does not match'
        Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])

        if pts.ndim > Trf.ndim:
            # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
            pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
        elif pts.ndim == 2:
            # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
            pts = pts[:, None, :]

    if pts.shape[-1] + 1 == Trf.shape[-1]:
        Trf = Trf.swapaxes(-1, -2)  # transpose Trf
        pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
    elif pts.shape[-1] == Trf.shape[-1]:
        Trf = Trf.swapaxes(-1, -2)  # transpose Trf
        pts = pts @ Trf
    else:
        pts = Trf @ pts.T
        if pts.ndim >= 2:
            pts = pts.swapaxes(-1, -2)

    if norm:
        pts = pts / pts[..., -1:]  
        if norm != 1:
            pts *= norm
            
    res = pts[..., :ncol].reshape(*output_reshape, ncol)
    return res