fadodr's picture
Upload app.py
530b593 verified
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("fadodr/finetuned_mental_health_therapy_original")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
print("Message:", message)
print("History:", history)
print("System Message:", system_message)
print("Max Tokens:", max_tokens)
print("Temperature:", temperature)
print("Top-p:", top_p)
print(dir(client))
try:
messages = [{"role": "instruction", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "input", "content": val[0]})
if val[1]:
messages.append({"role": "response", "content": val[1]})
messages.append({"role": "input", "content": message})
response = ""
print("sending message")
print(messages)
for message in client.text_generation(
messages,
stream=True,
temperature=temperature,
top_p=top_p,
):
print(message)
token = message.choices[0].delta.content[len(messages):]
response += token
yield response
except Exception as e:
print(e)
# from transformers import pipeline, BitsAndBytesConfig
# config = BitsAndBytesConfig(load_in_4bit=True)
# # Load the pipeline with your custom model
# generator = pipeline('text-generation', model='fadodr/finetuned_mental_health_therapy_original', quantization_config=config)
# # Generate text based on the input message
# def respond(message, history, system_message, max_tokens, temperature, top_p):
# prompt = f"""
# ### Input:
# {message}
# ### Instruction:
# {system_message}
# ### Response:
# """
# response = generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p)
# print(response)
# yield response[0]['generated_text']
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="I need your help as a mental health therapist", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()