Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("fadodr/finetuned_mental_health_therapy_original") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
print("Message:", message) | |
print("History:", history) | |
print("System Message:", system_message) | |
print("Max Tokens:", max_tokens) | |
print("Temperature:", temperature) | |
print("Top-p:", top_p) | |
print(dir(client)) | |
try: | |
messages = [{"role": "instruction", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "input", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "response", "content": val[1]}) | |
messages.append({"role": "input", "content": message}) | |
response = "" | |
print("sending message") | |
print(messages) | |
for message in client.text_generation( | |
messages, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
print(message) | |
token = message.choices[0].delta.content[len(messages):] | |
response += token | |
yield response | |
except Exception as e: | |
print(e) | |
# from transformers import pipeline, BitsAndBytesConfig | |
# config = BitsAndBytesConfig(load_in_4bit=True) | |
# # Load the pipeline with your custom model | |
# generator = pipeline('text-generation', model='fadodr/finetuned_mental_health_therapy_original', quantization_config=config) | |
# # Generate text based on the input message | |
# def respond(message, history, system_message, max_tokens, temperature, top_p): | |
# prompt = f""" | |
# ### Input: | |
# {message} | |
# ### Instruction: | |
# {system_message} | |
# ### Response: | |
# """ | |
# response = generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p) | |
# print(response) | |
# yield response[0]['generated_text'] | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="I need your help as a mental health therapist", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |