File size: 4,166 Bytes
5bcca9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import pandas as pd
import joblib


filename = 'anxiousAmazon.sav'
rf = joblib.load(filename)
forest_name = "ciro-c/emobot"


def calc_preds(df):
    pred = rf.predict(df)
    if pred == 1:
       return 'Has anxiety'
    else:
       return 'Don\'t have anxiety'


def process_inputs(Gender, Age, Major, Year, CGPA, Marriage, Depression, Panic, Treatment):
   df = pd.DataFrame(columns=['Marriage', 'Major', 'Depression', 'Panic', 'Treatment', 'Gender', 'CGPA', 'Year', 'Age']);
   df.loc[0] = [Marriage, Major, Depression, Panic, Treatment,Gender, CGPA, Year, Age];
   df['Marriage'] = df['Marriage'].map({'Yes': 1, 'No': 0})
   df['Depression'] = df['Depression'].map({'Yes': 1, 'No': 0})
   df['Anxiety'] = df['Anxiety'].map({'Yes': 1, 'No': 0})
   df['Panic'] = df['Panic'].map({'Yes': 1, 'No': 0})
   df['Treatment'] = df['Treatment'].map({'Yes': 1, 'No': 0})
   df['Gender'] = df['Gender'].map({'Female': 0, 'Male': 1})
   df['CGPA'] = df['CGPA'].map({'3.00 - 3.49':3,'3.50 - 4.00':4,'2.50 - 2.99':2,'2.00 - 2.49':1,'0 - 1.99':0})
   df['Major'] = df['Major'].map({
                       'ENGINEERING':16,
                 'ISLAMIC EDUCATION':23,
                       'ACCOUNTING ':0,
                        'BCS':3,
                        'BIT':7,
                        'LAWS':30,
                      'MATHEMATHICS':33,
                  'PENDIDIKAN ISLAM':36,
                   'HUMAN RESOURCES':20,
                           'IRKHS':22,
                        'PSYCHOLOGY':38,
                           'KENMS':25,
                           'ENM':17,
                    'MARINE SCIENCE':32,
                           'KOE':27,
                   'BANKING STUDIES':2,
           'BUSINESS ADMINISTRATION':8,
                           'LAW':29,
                           'KIRKHS':26,
                        'USULUDDIN ':41,
                           'TAASL':40,
                           'ENGINE':15,
                           'ALA':1,
                'BIOMEDICAL SCIENCE':5,
                           'BENL':4,
                           'IT':24,
                           'CTS':10,
                           'ENGIN':14,
                           'ECONS':13,
                           'MHSC':34,
                            'MALCOM':31,
                           'KOP':28,
                   'HUMAN SCIENCES ':21,
                     'BIOTECHNOLOGY':6,
                    'COMMUNICATION ':9,
                   'DIPLOMA NURSING':11,
                 'PENDIDIKAN ISLAM ':37,
                       'RADIOGRAPHY':39,
                       'FIQH FATWA ':19,
                      'DIPLOMA TESL':12,
                           'FIQH':18,
                          'NURSING ':35
        })     
   return calc_preds(df)

gender_input = gr.Radio(choices=["Female", "Male"], label="Gender")
age_input = gr.Number(label="Age")
major_input = gr.Radio(choices=['ENGINEERING', 'ISLAMIC EDUCATION', 'BIT', 'LAWS', 'MATHEMATHICS', 'PENDIDIKAN ISLAM', 'BCS', 'HUMAN RESOURCES', 'IRKHS', 'PSYCHOLOGY', 'KENMS', 'ACCOUNTING ', 'ENM', 'MARINE SCIENCE', 'KOE', 'BANKING STUDIES', 'BUSINESS ADMINISTRATION', 'LAW', 'KIRKHS', 'USULUDDIN ', 'TAASL', 'ENGINE', 'ALA', 'BIOMEDICAL SCIENCE', 'BENL', 'IT', 'CTS', 'ENGIN', 'ECONS', 'MHSC', 'MALCOM', 'KOP', 'HUMAN SCIENCES ', 'BIOTECHNOLOGY', 'COMMUNICATION ', 'DIPLOMA NURSING', 'PENDIDIKAN ISLAM ', 'RADIOGRAPHY', 'FIQH FATWA ', 'DIPLOMA TESL', 'FIQH', 'NURSING '], label="Major")
year_input = gr.Radio(choices=['YEAR 1', 'YEAR 2', 'YEAR 3', 'YEAR 4'], label="Year")
cgpa_input = gr.Radio(choices=['3.00 - 3.49', '3.50 - 4.00', '2.50 - 2.99', '2.00 - 2.49', '0 - 1.99'], label="CGPA")
marriage_input = gr.Radio(choices=["Yes", "No"], label="Marriage")
depression_input = gr.Radio(choices=["Yes", "No"], label="Depression")
panic_input = gr.Radio(choices=["Yes", "No"], label="Panic")
treatment_input = gr.Radio(choices=["Yes", "No"], label="Treatment")

interface = gr.Interface(
   fn=process_inputs,
   inputs=[gender_input, age_input, major_input, year_input, cgpa_input, marriage_input, depression_input, panic_input, treatment_input],
   outputs="text"
)

interface.launch()