Spaces:
Runtime error
Runtime error
initial upload
Browse files
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Zero Shot Video Classification
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from video_transformers import VideoModel
|
5 |
+
from utils import (
|
6 |
+
convert_frames_to_gif,
|
7 |
+
download_youtube_video,
|
8 |
+
sample_frames_from_video_file,
|
9 |
+
)
|
10 |
+
|
11 |
+
video_model = VideoModel.from_transformers("facebook/timesformer-base-finetuned-k400")
|
12 |
+
|
13 |
+
|
14 |
+
examples = [
|
15 |
+
["https://www.youtube.com/watch?v=huAJ9dC5lmI"],
|
16 |
+
["https://www.youtube.com/watch?v=wvcWt6u5HTg"],
|
17 |
+
["https://www.youtube.com/watch?v=-3kZSi5qjRM"],
|
18 |
+
["https://www.youtube.com/watch?v=-6usjfP8hys"],
|
19 |
+
["https://www.youtube.com/watch?v=B8OdMwVwyXc"],
|
20 |
+
["https://www.youtube.com/watch?v=B9ea7YyCP6E"],
|
21 |
+
["https://www.youtube.com/watch?v=BBkpaeJBKmk"],
|
22 |
+
["https://www.youtube.com/watch?v=BBqU8Apee_g"],
|
23 |
+
["https://www.youtube.com/watch?v=BDHub0gBGtc"],
|
24 |
+
["https://www.youtube.com/watch?v=I7cwq6_4QtM"],
|
25 |
+
["https://www.youtube.com/watch?v=Z0mJDXpNhYA"],
|
26 |
+
["https://www.youtube.com/watch?v=QkQQjFGnZlg"],
|
27 |
+
["https://www.youtube.com/watch?v=IQaoRUQif14"],
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
def predict(youtube_url):
|
32 |
+
|
33 |
+
video_path = download_youtube_video(youtube_url)
|
34 |
+
|
35 |
+
frames = sample_frames_from_video_file(video_path, num_frames=16)
|
36 |
+
gif_path = convert_frames_to_gif(frames)
|
37 |
+
|
38 |
+
result = video_model.predict(video_or_folder_path=video_path)
|
39 |
+
|
40 |
+
os.remove(video_path)
|
41 |
+
|
42 |
+
return result["predictions"], gif_path
|
43 |
+
|
44 |
+
|
45 |
+
app = gr.Blocks()
|
46 |
+
with app:
|
47 |
+
gr.Markdown("# **<p align='center'>Video Classification with Timesformer</p>**")
|
48 |
+
gr.Markdown(
|
49 |
+
"""
|
50 |
+
<p style='text-align: center'>
|
51 |
+
Timesformer is a video model that uses a Transformer architecture to process video frames.
|
52 |
+
<br>It is released by Facebook AI Research in ICML 2021.
|
53 |
+
<br>This version is trained on Kinetics-400 dataset and can classify videos into 400 classes.
|
54 |
+
</p>
|
55 |
+
"""
|
56 |
+
)
|
57 |
+
gr.Markdown(
|
58 |
+
"""
|
59 |
+
<p style='text-align: center'>
|
60 |
+
Follow me for more!
|
61 |
+
<br> <a href='https://twitter.com/fcakyon' target='_blank'>twitter</a> | <a href='https://github.com/fcakyon' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/fcakyon/' target='_blank'>linkedin</a> | <a href='https://fcakyon.medium.com/' target='_blank'>medium</a>
|
62 |
+
</p>
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
gr.Markdown("Provide a Youtube video URL.")
|
69 |
+
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
70 |
+
predict_btn = gr.Button(value="Predict")
|
71 |
+
with gr.Column():
|
72 |
+
video_gif = gr.Image(
|
73 |
+
label="Input Clip",
|
74 |
+
show_label=True,
|
75 |
+
)
|
76 |
+
with gr.Column():
|
77 |
+
predictions = gr.Label(
|
78 |
+
label="Predictions:", show_label=True, num_top_classes=5
|
79 |
+
)
|
80 |
+
|
81 |
+
gr.Markdown("**Examples:**")
|
82 |
+
gr.Examples(
|
83 |
+
examples,
|
84 |
+
youtube_url,
|
85 |
+
[predictions, video_gif],
|
86 |
+
fn=predict,
|
87 |
+
cache_examples=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
predict_btn.click(predict, inputs=youtube_url, outputs=[predictions, video_gif])
|
91 |
+
gr.Markdown(
|
92 |
+
"""
|
93 |
+
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>
|
94 |
+
<br> Based on this <a href=\"https://huggingface.co/facebook/timesformer-base-finetuned-k400\">HuggingFace model</a>
|
95 |
+
"""
|
96 |
+
)
|
97 |
+
|
98 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
decord
|
4 |
+
pytube
|
5 |
+
imageio
|
6 |
+
transformers @ git+https://github.com/huggingface/transformers.git@c54646b13d468b7a21fd6ee18f943ad69daab48e
|
7 |
+
video_transformers == 0.0.8
|
utils.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytube import YouTube
|
2 |
+
import numpy as np
|
3 |
+
from decord import VideoReader, cpu
|
4 |
+
import imageio
|
5 |
+
|
6 |
+
|
7 |
+
def download_youtube_video(url: str):
|
8 |
+
yt = YouTube(url)
|
9 |
+
|
10 |
+
streams = yt.streams.filter(file_extension="mp4")
|
11 |
+
file_path = streams[0].download()
|
12 |
+
return file_path
|
13 |
+
|
14 |
+
|
15 |
+
def sample_frame_indices(clip_len, frame_sample_rate):
|
16 |
+
converted_len = int(clip_len * frame_sample_rate)
|
17 |
+
start_idx = 0
|
18 |
+
end_idx = converted_len
|
19 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
20 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
21 |
+
return indices
|
22 |
+
|
23 |
+
|
24 |
+
def sample_frames_from_video_file(file_path: str, num_frames: int = 16):
|
25 |
+
videoreader = VideoReader(file_path, num_threads=1, ctx=cpu(0))
|
26 |
+
|
27 |
+
# sample frames
|
28 |
+
videoreader.seek(0)
|
29 |
+
indices = sample_frame_indices(clip_len=num_frames, frame_sample_rate=4)
|
30 |
+
frames = videoreader.get_batch(indices).asnumpy()
|
31 |
+
return frames
|
32 |
+
|
33 |
+
|
34 |
+
def convert_frames_to_gif(frames):
|
35 |
+
converted_frames = frames.astype(np.uint8)
|
36 |
+
imageio.mimsave("frames.gif", converted_frames, fps=8)
|
37 |
+
return "frames.gif"
|