Spaces:
Sleeping
Sleeping
File size: 952 Bytes
5aff646 f8732ac b0470a0 2ddf4d0 5aff646 9f2a34c 7356f5c f8732ac b0470a0 3145d7c f8732ac 3145d7c b0470a0 af5a304 9f2a34c e70859a 9d1b610 5aff646 9d1b610 5aff646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import os
import openai
from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
openai.api_key = os.environ['OpenAI_ApiKey']
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
# documents = SimpleDirectoryReader("data").load_data()
# index = VectorStoreIndex.from_documents(documents)
persist_dir = "index"
storage_context = StorageContext.from_defaults(persist_dir=persist_dir)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine()
def greet(question):
# return f"Hello, {question} !"
return query_engine.query(question)
question_textbox = gr.Textbox(label="Your question")
answer_textbox = gr.Textbox(label="Answer")
demo = gr.Interface(fn=greet, inputs=question_textbox, outputs=answer_textbox)
demo.launch() |